Modeling the Transmission Dynamics of Avian Influenza in Cattle

https://doi.org/10.48185/jmam.v5i3.1214

Authors

Keywords:

Avian Influenza, Cattle, Transmission dynamics, Basic reproduction number ($\mathcal{R}_0$), Sensitivity analysis.

Abstract

Avian Influenza (AI) poses a critical threat to cattle production worldwide, resulting in significant yield losses and economic damages. Despite the severity of AI, comprehensive modeling studies on its transmission dynamics within cattle populations remain limited. In this study, we present a mathematical model to describe the spread of AI among cattle. The model is based on the Susceptible-Infectious-Recovered (SIR) framework, adapted to capture the unique characteristics of AI transmission. The disease-free equilibrium of the model was computed, and the basic reproduction number for AI was calculated using the next-generation matrix method. Sensitivity analysis was conducted using normalized forward sensitivity method to determine the impact of various parameters on the basic reproduction number ($\mathcal{R}_0$). Analytical and numerical analyses indicate that increased contact rates between susceptible cattle and infected virus significantly raise the transmission rate of AI, impacting cattle health and productivity. Sensitivity analysis highlights that the recruitment rates of cattle and infection rates are the most influential parameters affecting $\mathcal{R}_0$. Control measures such as introducing AI-resistant cattle breeds and improving farm management practices to reduce infection rates may be used to mitigate the disease spread. This study enhances the understanding of AI transmission dynamics, providing valuable insights for developing targeted control strategies to protect cattle health and improve production.

Downloads

Download data is not yet available.

References

bibitem{diekmann1990definition}

Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. J. (1990). On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. textit{Journal of Mathematical Biology}, 28, 365--382. Springer.

bibitem{diekmann2010construction}

Diekmann, O., Heesterbeek, J. A. P., & Roberts, M. G. (2010). The construction of next-generation matrices for compartmental epidemic models. textit{Journal of the Royal Society Interface}, 7(47), 873--885. The Royal Society.

bibitem{castillo2002mathematical}

Castillo-Chavez, C., Blower, S., van den Driessche, P., Kirschner, D., & Yakubu, A.-A. (2002). textit{Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory} (Vol. 126). Springer Science & Business Media.

bibitem{chitnis2008determining}

Chitnis, N., Hyman, J. M., & Cushing, J. M. (2008). Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. textit{Bulletin of Mathematical Biology}, 70, 1272--1296. Springer.

bibitem{WOAH_AI_report}

World Organisation for Animal Health. (2024). AI (Avian Influenza). Retrieved from url{https://www.woah.org/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/2.03.04_AI.pdf}. Accessed: 2024-06-06.

bibitem{lupiani2009history}

Lupiani, B., & Reddy, S. M. (2009). The history of avian influenza. textit{Comparative Immunology, Microbiology and Infectious Diseases}, 32(4), 311--323. Elsevier.

bibitem{zheng2022role}

Zheng, T., Nie, L., Zhu, H., Luo, Y., & Teng, Z. (2022). Role of seasonality and spatial heterogeneous in the transmission dynamics of avian influenza. textit{Nonlinear Analysis: Real World Applications}, 67, 103567. Elsevier.

bibitem{pinotti2024modelling}

Pinotti, F., Kohnle, L., Lourenço, J., Gupta, S., Hoque, M. A., Mahmud, R., Biswas, P., Pfeiffer, D., & Fournié, G. (2024). Modelling the transmission dynamics of H9N2 avian influenza viruses in a live bird market. textit{Nature Communications}, 15(1), 3494. Nature Publishing Group UK London.

bibitem{subedi2024avian}

Subedi, D., Farhan, M. H. R., Niraula, A., Shrestha, P., Chandran, D., Acharya, K. P., & Ahmad, M. (2024). Avian Influenza in Low and Middle-Income Countries (LMICs): Outbreaks, Vaccination Challenges and Economic Impact. textit{Pakistan Veterinary Journal}, 44(1).

bibitem{graziosi2024highly}

Graziosi, G., Lupini, C., Catelli, E., & Carnaccini, S. (2024). Highly Pathogenic Avian Influenza (HPAI) H5 Clade 2.3.4.4 b Virus Infection in Birds and Mammals. textit{Animals}, 14(9), 1372. MDPI.

bibitem{li2024note}

Li, W., Guan, Y., Cao, J., & Xu, F. (2024). A note on global stability of a degenerate diffusion avian influenza model with seasonality and spatial Heterogeneity. textit{Applied Mathematics Letters}, 148, 108884. Elsevier.

bibitem{woah_ai}

World Organisation for Animal Health. (2024). Avian Influenza. Retrieved from url{https://www.woah.org/en/disease/avian-influenza/}. Accessed: 2024-06-06.

bibitem{reperant2009avian}

Reperant, L. A., Rimmelzwaan, G. F., Kuiken, T., et al. (2009). Avian influenza viruses in mammals. textit{Revue scientifique et technique}, 28(1), 137.

bibitem{root2020avian}

Root, J. J., & Shriner, S. A. (2020). Avian influenza A virus associations in wild, terrestrial mammals: A review of potential synanthropic vectors to poultry facilities. textit{Viruses}, 12(12), 1352. MDPI.

bibitem{enetwild2024role}

ENETWILD Consortium, Flavia, O., Sascha, K., Carola, S.-L., Christoph, S., Valerie, A., Alina, A., Sophia, B., Hannes, B., Caroline, B., et al. (2024). The role of mammals in avian influenza: A review. textit{EFSA Supporting Publications}, 21(3), 8692E. Wiley Online Library.

bibitem{zeng2024spatiotemporal}

Zeng, J., Du, F., Xiao, L., Sun, H., Lu, L., Lei, W., Zheng, J., Wang, L., Shu, S., Li, Y., et al. (2024). Spatiotemporal genotype replacement of H5N8 avian influenza viruses contributed to H5N1 emergence in 2021/2022 panzootic. textit{Journal of Virology}, e01401--23. Am Soc Microbiol.

bibitem{huang2023approaches}

Huang, M.-L., Wu, H.-D. I., & Chao, D.-Y. (2023). Approaches for Spatial and Temporal-Spatial Clustering Analysis in Avian Influenza Outbreaks. In textit{Earth Data Analytics for Planetary Health} (pp. 169--184). Springer.

bibitem{tseng2024re}

Tseng, I., Pan, B.-Y., Feng, Y.-C., & Fang, C.-T. (2024). Re-evaluating efficacy of vaccines against highly pathogenic avian influenza virus in poultry: a systematic review and meta-analysis. textit{One Health}, 100714. Elsevier.

bibitem{lee2024genome}

Lee, D.-H., Torchetti, M. K., Killian, M. L., Brown, I., & Swayne, D. E. (2024). Genome sequences of hemagglutinin cleavage site predict the pathogenicity phenotype of avian influenza virus: statistically validated data for facilitating rapid declarations and reducing reliance on in vivo testing. textit{Avian Pathology}, just-accepted, 1--42. Taylor & Francis.

bibitem{lee2021pathobiological}

Lee, D.-H., Criado, M. F., & Swayne, D. E. (2021). Pathobiological origins and evolutionary history of highly pathogenic avian influenza viruses. textit{Cold Spring Harbor perspectives in medicine}, 11(2), a038679. Cold Spring Harbor Laboratory Press.

bibitem{khan2020modeling}

Khan, Muhammad Altaf, Ullah, Saif, Khan, Yasir, & Farhan, Muhammad. (2020). Modeling and scientific computing for the transmission dynamics of avian influenza with half-saturated incidence. textit{International Journal of Modeling, Simulation, and Scientific Computing}, 11(04), 2050035. World Scientific.

bibitem{cdc_h5n1_2023}

Centers for Disease Control and Prevention. (2023). Highly Pathogenic Avian Influenza A(H5N1) Virus: Technical Report December 2022. Retrieved from url{https://www.cdc.gov/flu/avianflu/spotlights/2022-2023/h5n1-technical-report_december.html}. Accessed: 2024-06-06.

bibitem{cdc_avian_influenza_mammals}

Centers for Disease Control and Prevention. (2024). Avian Influenza A Viruses in Mammals. Retrieved from url{https://www.cdc.gov/flu/avianflu/mammals.htm}. Accessed: 2024-06-06.

bibitem{korobeinikov2002lyapunov}

Korobeinikov, A., & Wake, G. C. (2002). Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. textit{Applied Mathematics Letters}, 15(8), 955--960. Elsevier.

bibitem{lou2024predictive}

Lou, J., Liang, W., Cao, L., Hu, I., Zhao, S., Chen, Z., Chan, R. W. Y., Cheung, P. P. H., Zheng, H., Liu, C., et al. (2024). Predictive evolutionary modelling for influenza virus by site-based dynamics of mutations. textit{Nature Communications}, 15(1), 2546. Nature Publishing Group UK London.

bibitem{ali2022dynamics}

Ali, A., Khan, S. U., Ali, I., & Khan, F. U. (2022). On dynamics of stochastic avian influenza model with asymptomatic carrier using spectral method. textit{Mathematical Methods in the Applied Sciences}, 45(13), 8230--8246. Wiley Online Library.

bibitem{korobeinikov2004lyapunov}

Korobeinikov, A. (2004). Lyapunov functions and global properties for SEIR and SEIS epidemic models. textit{Mathematical medicine and biology: a journal of the IMA}, 21(2), 75--83. OUP.

bibitem{vargas2009constructions}

Vargas-De-León, C. (2009). Constructions of Lyapunov functions for classic SIS, SIR and SIRS epidemic models with variable population size. textit{Foro-Red-Mat: Revista electrónica de contenido matemático}, 26(5), 1--12.

bibitem{malek2024mathematical}

Malek, A., & Hoque, A. (2024). Mathematical modeling of the infectious spread and outbreak dynamics of avian influenza with seasonality transmission for chicken farms. textit{Comparative Immunology, Microbiology and Infectious Diseases}, 104, 102108. Elsevier.

bibitem{delamater2019complexity}

Delamater, P. L., Street, E. J., Leslie, T. F., Yang, Y. T., & Jacobsen, K. H. (2019). Complexity of the basic reproduction number (R0). textit{Emerging infectious diseases}, 25(1), 1. Centers for Disease Control and Prevention.

bibitem{van2017reproduction}

Van den Driessche, P. (2017). Reproduction numbers of infectious disease models. textit{Infectious disease modelling}, 2(3), 288--303. Elsevier.

bibitem{mfinanga2024modelling}

Mfinanga, I. S., Shaban, N., & Marijani, T. (2024). Modelling Foot and Mouth Disease in the Context of Active Immigrants. textit{Journal of Applied Mathematics and Physics}, 12(1), 147--167. Scientific Research Publishing.

bibitem{alhassan2020modeling}

Alhassan, C. J., & Achema, K. O. (2020). Modeling the transmission dynamics of an avian influenza: qualitative and quantitative analysis. textit{IOSR Journal of Mathematics (IOSR-JM)}, 16, 44--55.

bibitem{tessema2019epidemiological}

Tessema, K. M. (2019). Epidemiological modelling of foot and mouth disease control in cattle: incorporating time and spatial spread of disease dynamics. (Doctoral dissertation).

bibitem{ndendya2023next}

Ndendya, J. Z., Leandry, L., & Kipingu, A. M. (2023). A next-generation matrix approach using Routh--Hurwitz criterion and quadratic Lyapunov function for modeling animal rabies with infective immigrants. textit{Healthcare Analytics}, 4, 100260. Elsevier.

bibitem{gashirai2020global}

Gashirai, T. B., Musekwa-Hove, S. D., Lolika, P. O., & Mushayabasa, S. (2020). Global stability and optimal control analysis of a foot-and-mouth disease model with vaccine failure and environmental transmission. textit{Chaos, Solitons & Fractals}, 132, 109568. Elsevier.

bibitem{kharis2018mathematical}

Kharis, M., et al. (2018). Mathematical modeling of Avian Influenza epidemic with bird vaccination in constant population. textit{Journal of Physics: Conference Series}, 983(1), 012116. IOP Publishing.

bibitem{sofiane2024mathematical}

Sofiane, K., Oubouskour, K., & Omar, B. (2024). Mathematical modeling and optimal control strategies to limit the spread of fowl pox in poultry. textit{Results in Control and Optimization}, 100428. Elsevier.

bibitem{mushayabasa2011impact}

Mushayabasa, S., Bhunu, C. P., & Dhlamini, M. (2011). Impact of vaccination and culling on controlling foot and mouth disease: a mathematical modelling approach. Scientific Research.

bibitem{alexander2007overview}

Alexander, D. J. (2007). An overview of the epidemiology of avian influenza. textit{Vaccine}, 25(30), 5637--5644. Elsevier.

bibitem{liu2024h4}

Liu, J., Liang, Z., Sun, W., Hua, W., Huang, S., & Wen, F. (2024). The H4 subtype of avian influenza virus: a review of its historical evolution, global distribution, adaptive mutations and receptor binding properties. textit{Poultry Science}, 103913. Elsevier.

bibitem{ly2024highly}

Ly, H. (2024). Highly pathogenic avian influenza H5N1 virus infections of dairy cattle and livestock handlers in the United States of America. textit{Virulence}, 15(1), 2343931. Taylor & Francis.

bibitem{garg2024outbreak}

Garg, S. (2024). Outbreak of highly pathogenic avian influenza A (H5N1) viruses in US dairy cattle and detection of two human cases—United States, 2024. textit{MMWR. Morbidity and Mortality Weekly Report}, 73.

bibitem{liang2023pathogenicity}

Liang, Y. (2023). Pathogenicity and virulence of influenza. textit{Virulence}, 14(1), 2223057. Taylor & Francis.

bibitem{AVMAH5N1}

American Veterinary Medical Association. (2024). Avian Influenza Virus Type H5N1 in US Dairy Cattle. url{https://www.avma.org/resources-tools/animal-health-and-welfare/animal-health/avian-influenza/avian-influenza-virus-type-h5n1-us-dairy-cattle#:~:text=Common%20clinical%20signs%20in%20affected,the%20case%20for%20dairy%20cattle.} Accessed: 2024-06-14.

bibitem{malek2024mathematical}

Malek, A., & Hoque, A. (2024). Mathematical modeling of the infectious spread and outbreak dynamics of avian influenza with seasonality transmission for chicken farms. textit{Comparative Immunology, Microbiology and Infectious Diseases}, 104, 102108. Elsevier.

bibitem{li2024global}

Li, J., & Nie, L. (2024). Global Dynamics Analysis of Non-Local Delayed Reaction-Diffusion Avian Influenza Model with Vaccination and Multiple Transmission Routes in the Spatial Heterogeneous Environment. textit{Qualitative Theory of Dynamical Systems}, 23(5), 1--42. Springer.

bibitem{modnak2017mathematical}

Modnak, C. (2017). Mathematical modelling of an avian influenza: optimal control study for intervention strategies. textit{Appl. Math. Inf. Sci}, 11(4), 1049--1057.

bibitem{gourram2023mathematical}

Gourram, H., Baroudi, M., Labzai, A., & Belam, M. (2023). Mathematical modeling and optimal control strategy for the influenza (H5N1). textit{Commun. Math. Biol. Neurosci.}, 2023, Article-ID.

bibitem{alhassan2020modeling}

Alhassan, C. J., & Achema, K. O. (2020). Modeling the transmission dynamics of an avian influenza: qualitative and quantitative analysis. textit{IOSR Journal of Mathematics (IOSR-JM)}, 16, 44--55.

bibitem{khan2019modeling}

Khan, M. A., Farhan, M., Islam, S., & Bonyah, E. (2019). Modeling the transmission dynamics of avian influenza with saturation and psychological effect. textit{Discrete and Continuous Dynamical Systems-S}, 12(3), 455--474. Discrete and Continuous Dynamical Systems-S.

bibitem{yang2024sliding}

Yang, S., Shen, F., & Zhang, Q. (2024). Sliding dynamics and optimal control of avian influenza model with saturated incidence rate. textit{Asian Journal of Control}, 26(3), 1178--1203. Wiley Online Library.

bibitem{vizzottomathematical}

Vizzotto Osowski, G., Castilho Duarte, S., Soares Ferreira Neto, J., Agnes Cardoso Côrtes, V., Schmidt, A. C., Acosta, A., Belleza Maciel, P., Silvestrini Machado, J., & Ferreira, F. (n.d.). Mathematical Model to Simulate the Spread of Avian Influenza in Santa Catarina, Brazil.

bibitem{swayne2008avian}

Swayne, D. E., & Kapczynski, D. (2008). Avian influenza control strategies. textit{Avian influenza}, 444, 287--297. Blackwell Publishing, Ames, Iowa, USA.

bibitem{yadav2020emerging}

Yadav, M. P., Singh, R. K., & Malik, Y. S. (2020). Emerging and transboundary animal viral diseases: Perspectives and preparedness. textit{Emerging and transboundary animal viruses}, 1--25. Springer.

bibitem{branda2024monitoring}

Branda, F., Giovanetti, M., Scarpa, F., & Ciccozzi, M. (2024). Monitoring avian influenza in mammals with real-time data. textit{Pathogens and Global Health}, 1--5. Taylor & Francis.

bibitem{kumbhar2024cow}

Kumbhar, S. M. (2024). Cow Health and Disease Management: Preventive Care and Treatment Approaches. textit{Revista Electronica de Veterinaria}, 25(1), 325--339.

bibitem{sanchez2024seasonal}

Sánchez-Cano, A., Camacho, M.-C., Ramiro, Y., & Cardona-Cabrera, T., & Höfle, U. (2024). Seasonal changes in bird communities on poultry farms and house sparrow—wild bird contacts revealed by camera trapping. textit{Frontiers in Veterinary Science}, 11, 1369779. Frontiers Media SA.

bibitem{european2024drivers}

European Food Safety Authority (EFSA), European Centre for Disease Prevention and Control (ECDC), Melidou, A., Enkirch, T., Willgert, K., Adlhoch, C., Alm, E., Lamb, F., Marangon, S., Monne, I., et al. (2024). Drivers for a pandemic due to avian influenza and options for One Health mitigation measures. textit{EFSA Journal}, 22(4), e8735. Wiley Online Library.

bibitem{warren2024assessment}

Warren, C. J., Brookes, S. M., Arnold, M. E., Irvine, R. M., Hansen, R. D. E., Brown, I. H., Banyard, A. C., & Slomka, M. J. (2024). Assessment of Survival Kinetics for Emergent Highly Pathogenic Clade 2.3. 4.4 H5Nx Avian Influenza Viruses. textit{Viruses}, 16(6), 889. MDPI.

bibitem{yadav2024radiation}

Yadav, R. K. B., Chandra, A., Meena, T., Divkar, J. K., Vikas, Mishra, A., Pujari, R. N., Narsaiah, M. V. R., & Prabath, R. (2024). Radiation Emergency Preparedness and Response. In textit{Handbook on Radiation Environment, Volume 1: Sources, Applications and Policies} (pp. 531--579). Springer.

Published

2024-12-22

How to Cite

Mrope, F. (2024). Modeling the Transmission Dynamics of Avian Influenza in Cattle. Journal of Mathematical Analysis and Modeling, 5(3), 100–120. https://doi.org/10.48185/jmam.v5i3.1214

Issue

Section

Articles