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Abstract

In the 1980s, coffee production in Kenya peaked at an average of 1.7 million bags annually. Since then,
this production has declined to the current output of below 0.9 million bags annually. Coffee berry disease
(CBD) and Coffee leaf rust (CLR) are some of the causes of this decline. This is due to insufficient knowledge
of optimal control strategies for CBD and CLR co-infection. In this research, we derive a system of ODEs from
the mathematical model for co-infection of CBD and CLR with control strategies to perform optimal control
analysis. An optimal control problem is formulated and solved using Pontryagin’s maximum principle. The
outcomes of the model’s numerical simulations indicate that combining all interventions is the best strategy
for slowing the spread of the CBD-CLR co-infection.
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1. Introduction

Coffee is one of the major cash crops in Kenya. According to the Coffee Research In-
stitute of Kenya, coffee is grown in large and small-scale farms, whereby 70% of coffee
production is from small-scale farms. The regions where coffee is grown in Kenya are Mt.
Kenya, Rift Valley, Nyanza, and Western. These comprise 32 counties out of a total of 47
counties in Kenya [1].

In the 1980s, coffee production in Kenya peaked at an average of 1.7 million bags annually
[2]. Since then, this production has declined to the current production of below 0.9 mil-
lion bags annually due to several factors like diseases and insect pest attacks, nutritional
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deficiencies, and management [1]. For instance, Coffee Berry Disease (CBD) and Coffee
Leaf Rust (CLR) are some of the diseases that have contributed to the decline of coffee
production in Kenya.

Coffee Berry Disease is caused by the fungus Colletotrichum kahawae. The first docu-
mentation of CBD dates back to 1922 in western Kenya. The disease led to the severe
destruction of coffee plantations in the region [3].

Coffee leaf rust (CLR), caused by the fungus Hemileia vastatrix, is one of the most common
diseases affecting coffee worldwide. It is Kenya’s second most serious after CBD [4]. CLR
was first discovered in Kenya in 1912 [5]. According to [6], CBD can cause up to 70-80 %
of losses and CLR may lead to loss of berries up to 70% and foliage up to 50%.

Mathematical models have been used to study human, animal, and plant disease dynam-
ics, see [7, 8, 9]. A few models have been proposed for studying CBD. For instance, a
mathematical model to study the dynamics of CBD by [10]. However, several CLR models
have been considered in recent years. Some of these models investigate the factors that
affect CLR intensity in several plots in Honduras [11], and the connection between the
local and regional dynamics of the CLR model [12].

Vandermeer et al.[13] used an SI epidemiological model of the host to represent the CLR
dynamics on a coffee farm in Chiapas. Djuikem et al. [14] constructed and analyzed a
PDE model to describe CLR transmission in a coffee farm during wet and dry seasons and
its behavior over time. Djuikem et al. [15] proposed a model of the coffee leaf rust (CLR)
with optimal control.

The co-infection concept has been captured in several mathematical models of infectious
diseases; see, for example, HIV-Tuberculosis co-infection ([16], [17]), malaria and cholera
[18], pneumonia and typhoid [19]. Co-infection phenomena, like human diseases, are ex-
pected to alter the course of infection in co-infected plants [20]. However, co-infection in
plants such as coffee is a topic that hasn’t gotten much attention. Thus, this research seeks
to study the optimal control of the co-infection of CBD and CLR.

2. Model Formulation

This study builds upon the model presented in the study [10], which discussed the
dynamics of CBD. To investigate the dynamics of CBD-CLR co-infection, we divided the
coffee plants in the plantation into eight classes at any time t, namely, the suscepti-
ble coffee plants S(t), coffee plants exposed to Colletotrichum kahawae Ek(t), plants ex-
posed to Hemileia vastatrix Ev(t), co-exposed coffee plants Ekv(t), the CBD infected cof-
fee plants Ik(t), the CLR infected coffee plants Iv(t), the co-infected coffee plants Ikv(t)
and recovered coffee plants R(t) such that the total number of coffee plants is given
by N(t) = S(t) + Ek(t) + Ik(t) + Ev(t) + Iv(t) + Ekv(t) + Ikv(t) + R(t). The number of Col-
letotrichum kahawae and Hemileia vastatrix pathogens in the plantation at any time t is
Pk(t) and Pv(t) respectively. The model is schematically described in the Figure 1
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Figure 1: Flow chart of epidemic coffee plants

From Figure 1 we derive the following equations:

dS

dt
= Λ − (1 − u1)ϖkPkS− (1 − u2)ϖvPvS− µS,

dEk

dt
= (1 − u1)ϖkPkS + (1 − ξv)(ωv + u4)Ekv − (αk + u3)Ek − ((1 − u2)ϖvPv + µ + ηk)Ek,

dEv

dt
= (1 − u2)ϖvPvS + (1 − ξk)(ωk + u3)Ekv − (αv + u4)Ev − ((1 − u1)ϖkPk + µ + ηv)Ev,

dEkv

dt
= (1 − u2)(1 − qv)ϖvPvEk + (1 − u1)(1 − qk)ϖkPkEv − (ωk + u3)Ekv − (ωv + u4)Ekv

−(αkv + u5)Ekv − (µ + ηkv)Ekv,

dIk
dt

= ηkEk + ξv(ωv + u4)Ekv + (πv + u4)Ikv − (1 − u2)ϖvPvIk − (ρk + u3)Ik − (µ + δk)Ik,

dIv

dt
= ηvEv + ξk(ωk + u3)Ekv + (πk + u3)Ikv − (1 − u1)ϖkPkIv − (ρv + u4)Iv − (µ + δv)Iv,

dIkv
dt

= (1 − u2)qvϖvPvEk + (1 − u1)qkϖkPkEv + (1 − u1)ϖkPkIv + (1 − u2)ϖvPvIk + ηkvEkv

−(πk + u3)Ikv − (πv + u4)Ikv − (ρkv + u5)Ikv − (µ + δk + δv)Ikv,
dPk
dt

= γ1Ek + γ2Ik + γ3Ekv + γ4Ikv − (δ1 + u6)Pk,
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dPv

dt
= τ1Ev + τ2Iv + τ3Ekv + τ4Ikv − (δ2 + u7)Pv,

dR

dt
= (αk + u3)Ek + (αv + u4)Ev + (αkv + u5)Ekv + (ρk + u3)Ik + (ρv + u4)Iv + (ρkv + u5)Ikv

−µR,

(2.1)

Where Λ is the recruitment rate of susceptible coffee trees through continuous planting,
µ is the natural death rate of coffee trees, ϖk is the rate at which coffee trees are exposed
to the coffee berry disease through contact with Colletotrichum kahawae, ϖv is the rate at
which coffee trees are exposed to coffee leaf rust through contact with Hemileia vastatrix,
0 < qk < 1, 0 < qv < 1, 0 < ξk < 1 and 0 < ξv < 1 are constants of proportion, ηk
is the rate at which coffee trees in Ek progress to Ik, αk is the rate at which coffee trees
in Ek recover, ηv is the rate at which coffee trees in Ev progress to Iv, αv is the rate at
which coffee trees in Ev recover, ηkv is the rate at which coffee trees in Ekv progress to
Ikv, αkv is the rate at which coffee trees in Ekv recover from both CBD and CLR, ωv is
CLR recovery rate of coffee trees in Ekv, ωk is CBD recovery rate of coffee trees in Ekv,
ρk is the rate at which coffee trees in Ik recover, ρv is the rate at which coffee trees in
Iv recover, ρkv is the rate at which coffee trees in Ikv recover from both CBD and CLR,
πv is CLR recovery rate of coffee trees in Ikv, πk is CBD recovery rate of coffee trees in
Ikv, δk is CBD-induced death rate, δv is CLR-induced death rate , γ1, γ2, γ3 and γ4 are
the rates at which coffee trees in Ek(t), Ik(t), Ekv(t) and Ikv(t) contribute to the increase
of Pk pathogens in the environment respectively, τ1, τ2, τ3 and τ4 are the rates at which
coffee trees in Ev(t), Iv(t), Ekv(t) and Ikv(t) contribute to the increase of Pv pathogens in
the environment respectively, and δ1 and δ2 are the decay rates of the pathogens in Pk and
Pv classes respectively. Also, (ui(t), i = 1, 2, · · · , 7) are time-dependent control measures
that reduce the rate of CBD and CLR infection, and they are defined as:

(i) u1− prevention of CBD infection by use of cultural measures (pruning and weeding)
and planting resistant coffee varieties such as K7 (k gene), Hibrido de Timor (Ck-1
or T gene) and Rume Sudan (R and K genes)

(ii) u2− prevention of CLR infection by spraying copper oxychloride, using resistant/tolerant
plant cultivars from suggested nurseries, and cultural measures including appropri-
ate pruning and weeding.

(iii) u3− Treatment of CBD-infected coffee plants by applying copper-based fungicides
such as Nordox 75% EC

(iv) u4− Treatment of CLR-infected coffee plants by spraying For the management of
coffee leaf rust, a tank mixture of copper (5 kg of 50% weightable powder copper
oxychloride) and a half-rate organic fungicide (for example, 2 kg of 75% weightable
powder chlorothalonil) is also effective.

(v) u5− Treatment of CBD-CLR Co-infected coffee plants by spraying Tebuconazole

(vi) u6− Elimination of Colletotrichum kahawae pathogens by using bio-control agents
such as Pseudomonas spinosa ECk-17, B. mycoides ECk-06 and Bacillus megaterium
ECk-05
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(vii) u7 Elimination of Hemileia vastatrix pathogens by use of suspensions of Bacillus
species as a biocontrol

3. Basic Properties of the model

We discuss the Positivity and Boundedness of the solutions of the model.

3.1. Positivity of the solutions of the model
Lemma 3.1. Let S0 > 0, Ek0 ⩾ 0,Ev0 ⩾ 0, Ekv0 ⩾ 0,Ik0 ⩾ 0, Iv0 ⩾ 0, Ikv0 ⩾ 0, Pk0 ⩾ 0,
Pv0 ⩾ 0, and R0 ⩾ 0 be the initial conditions of the system (2.1) then the solutions S, Ek,Ev,
Ekv,Ik, Iv, Ikv, Pk, Pv, and R are non-negative ∀ t > 0.

Proof. Considering the system (2.1), the maximum endemic period, T, is determined by
T = sup{t > 0 | S(τ) > 0, Ek(τ) ⩾ 0, Ev(τ) ⩾ 0, Ekv(τ) ⩾ 0, Ik(τ) ⩾ 0, Iv(τ) ⩾ 0, Ikv ⩾
0, Pk(τ) ⩾ 0, Pv ⩾ 0, R(τ) ⩾ 0 ∀τ ∈ [0, t]}.
Taking S0 > 0, Ek0 ⩾ 0, Ev0 ⩾ 0, Ekv0 ⩾ 0,Ik0 ⩾ 0, Iv0 ⩾ 0, Ikv0 ⩾ 0, Pk0 ⩾ 0, Pv0 ⩾ 0,
and R0 ⩾ 0, let us express the first equation of the system (2.1) as

dS

dt
+ ((1 − u1)ϖkPk + (1 − u2)ϖvPv + µ)S = Λ. (3.1)

Multiplying both sides of equation (3.1) by the integrating factor, we obtain

d

dt

S(t) exp

T∫
0

((1 − u1)ϖkPk + (1 − u2)ϖvPv + µ)(s)ds


= Λ exp

T∫
0

((1 − u1)ϖkPk + (1 − u2)ϖvPv + µ)(s)ds

 .

(3.2)

Equation (3.2)’s both sides are integrated from 0 to T to produce the following result.

S(T ) = exp

− T∫
0

((1 − u1)ϖkPk + (1 − u2)ϖvPv + µ)(s)ds

 •

S0 +

T∫
0

Λ exp

T̃∫
0

((1 − u1)ϖkPk + (1 − u2)ϖvPv + µ)(τ)dτ

dT̃

 .

(3.3)

Thus S(t) > 0 ∀ t > 0.
From the second equation of the system (2.1), we have

dEk

dt
⩾− (αk + u3 + (1 − u2)ϖvPv + µ + ηk)Ek. (3.4)
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Solving equation (3.4) yields

Ek ⩾Ek0 exp

−

(αk + u3 + µ + ηk)T +

T∫
0

(1 − u2)ϖvPv(s)ds

 ⩾ 0. (3.5)

Using the same methodology to prove the next eight equations, we arrive at
Ev(t) ⩾ 0, Ekv(t) ⩾ 0,Ik(t) ⩾ 0, Iv(t) ⩾ 0, Ikv(t) ⩾ 0, Pk(t) ⩾ 0, Pv(t) ⩾ 0 R(t) ⩾ 0.
As a result, every solution of the system (2.1) is positive ∀ t > 0.

3.2. Boundedness of the solutions of the model
This section demonstrates that every feasible solution is uniformly bounded in a proper

subset D .

Lemma 3.2. Let the initial conditions of system (2.1) be non-negative in R10
+ ,

DN =
{

(S, Ek, Ev, Ekv, Ik, Iv, Ikv, R) ∈ R8
+ : N(t) ⩽ Λ

µ

}
,

DPk
=
{
Pk ∈ R1

+ : Pk(t) ⩽ Λ(γ1+γ2+γ3+γ4)
µδ1

}
and DPv

=
{
Pv ∈ R1

+ : Pv(t) ⩽ Λ(τ1+τ2+τ3+τ4)
µδ2

}
then the set D = DN ∪DPk

∪DPv
⊂ R8

+ × R1
+ × R1

+ is positively invariant.

Proof. In this lemma, we are required to show that DN, DPk
and DPv

are positively
invariant. To begin, we add the system (2.1)’s first seven equations together with its final
equation to arrive at

dN

dt
= Λ − µN− (δkIk + δvIv + δkIkv + δvIkv). (3.6)

In the absence of the CBD and CLR, we have

dN

dt
⩽ Λ − µN. (3.7)

Solving equation (3.7) for N, we arrive

N(t) ⩽
Λ
µ

+
{
N0 −

Λ
µ

}
e−µt. (3.8)

Hence
N(t) ⩽

Λ
µ

as t → ∞.

Therefore the feasible region for the coffee plant population in the system (2.1) is defined
by

DN =
{

(S, Ek, Ev, Ekv, Ik, Iv, Ikv, R) ∈ R8
+ : N(t) ⩽

Λ
µ

}
.

In view of the eighth equation of system (2.1), the equation for Colletotrichum kahawae
pathogens,
dPk

dt = γ1Ek + γ2Ik + γ3Ekv + γ4Ikv − δ1Pk,
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We rewrite it as
dPk
dt

⩽
Λ(γ1 + γ2 + γ3 + γ4)

µ
− δ1Pk. (3.9)

Solving equation (3.9), we get

Pk(t) ⩽
Λ(γ1 + γ2 + γ3 + γ4

µδ1
+
(
Pk0 −

Λ(γ1 + γ2 + γ3 + γ4)
µδ1

)
e−δ1t (3.10)

Hence

Pk(t) ⩽
Λ(γ1 + γ2 + γ3 + γ4)

µδ1
as t → ∞.

Therefore, the feasible region for Colletotrichum kahawae pathogens is given by

DPk
=
{
Pk ∈ R1

+ : Pk(t) ⩽
Λ(γ1 + γ2 + γ3 + γ4)

µδ1

}
.

From the ninth equation of system (2.1), the equation for Hemileia vastatrix pathogens,
dPv

dt = τ1Ev + τ2Iv + τ3Ekv + τ4Ikv − δ2Pv,
we have

dPv

dt
⩽

Λ(τ1 + τ2 + τ3 + τ4)
µ

− δ2Pv. (3.11)

Upon solving equation (3.11) for Pv(t), we obtain

Pv(t) ⩽
Λ(τ1 + τ2 + τ3 + τ4)

µδ1
+
(
Pv0 −

Λ(τ1 + τ2 + τ3 + τ4)
µδ2

)
e−δ2t. (3.12)

Therefore

Pv(t) ⩽
Λ(τ1 + τ2 + τ3 + τ4)

µδ2
as t → ∞.

Hence the feasible region for Hemileia vastatrix pathogens is given by

DPv
=
{
Pv ∈ R1

+ : Pv(t) ⩽
Λ(τ1 + τ2 + τ3 + τ4)

µδ2

}
.

As a result, the feasible region defined by the set D = DN ∪DPk
∪DPk

⊂ R8
+ ×R1

+ ×R1
+ is

positively invariant.

Since all the system (2.1)’s solutions with non-negative initial conditions are non-negative
∀ t > 0 and D is positively invariant, which implies that every feasible solution is uniformly
bounded in a proper subset D , it follows that the system is appropriate for the study of
the optimal control analysis of CBD-CLR co-infection.
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4. Optimal control problem

The model’s objective is to minimize the number of infections and control costs asso-
ciated with each control. The objective function to be minimized is formulated as follows:

J = min
u1,u2,u3,u4,u5,u6,u7

T∫
0

[b1Ek(t) + b2Ev(t) + b3Ekv(t) + b4Ik(t) + b5Iv(t)

+ b6Ikv(t) + b7Pk(t) + b8Pv(t) +
1
2

7∑
i=1

viu
2
i]dt


(4.1)

Subject to the differential equations in the system (2.1). T is the intervention period. The
coefficients b1, b2, b3, b4, b5, b6, b7, and b8 are the costs associated with minimizing plants
exposed to Colletotrichum kahawae (the infected coffee plants which have not showed
symptoms) Ek(t), plants exposed to Hemileia vastatrix Ev(t), co-exposed plants Ekv, the
CBD infected coffee plants Ik(t), the CLR infected coffee plants Iv(t), the co-infected plants
Ikv(t), Colletotrichum kahawae pathogens Pk(t) and Hemileia vastatrix pathogens Pv(t),
respectively. On the other hand, the parameters v1, v2, v3, v4, v5, v6 and v7 are the costs
weights associated with the controls u1, u2, u3, u4, u5, u6, u7 respectively. Our goal is
optimal controls (u∗

1 , u
∗
2 , u

∗
3 , u

∗
4 , u

∗
5 , u

∗
6 , u

∗
7 ) such that

J(u∗
1 , u

∗
2 , u

∗
3 , u

∗
4 , u

∗
5 , u

∗
6 , u

∗
7 ) = min {J(u1, u2, u3, u4, u5, u6, u7)|u1, u2, u3, u4, u5, u6, u7 ∈ U} ,

where the control set U = {(u1(t), u2(t), u3(t), u4(t), u5(t), u6(t), u7(t)) | 0 ⩽ ui ⩽ 1, i =
1, 2, · · · , 7; t ∈ [0, T ]} is Lebesgue measurable.

5. The Hamiltonian and Optimality System

We use Pontryagin’s Maximum Principle [21] to define the Hamiltonian (H) as:

H =b1Ek(t) + b2Ev(t) + b3Ekv(t) + b4Ik(t) + b5Iv(t) + b6Ikv(t) + b7Pk(t)

+ b8Pv(t) +
1
2
v1u

2
1 +

1
2
v2u

2
2 +

1
2
v3u

2
3 +

1
2
v4u

2
4 +

1
2
v5u

2
5 +

1
2
v6u

2
6 +

1
2
v7u

2
7

+ M1
dS

dt
+ M2

dEk

dt
+ M3

dEv

dt
+ M4

dEkv

dt
+ M5

dIk
dt

+ M6
dIk
dt

+ M7
dIkv
dt

+ M8
dPk
dt

+ M9
dPv

dt
+ M10

dR

dt


, (5.1)

Where M1, M2, M3, M4, M5, M6, M7, M8, M9 and M10 are adjoint or co-state
variables corresponding to the state variables S, Ek, Ev, Ekv, Ik, Iv, Ikv, Pk, Pv and R,
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respectively. Using system (2.1), we can rewrite equation (5.1) as

H =b1Ek(t) + b2Ev(t) + b3Ekv(t) + b4Ik(t) + b5Iv(t) + b6Ikv(t) + b7Pk(t) + b8Pv(t)

+
1
2
v1u

2
1 +

1
2
v2u

2
2 +

1
2
v3u

2
3 +

1
2
v4u

2
4 +

1
2
v5u

2
5 +

1
2
v6u

2
6 +

1
2
v7u

2
7

+ M1{Λ − (1 − u1)ϖkPkS− (1 − u2)ϖvPvS− µS}

+ M2{(1 − u1)ϖkPkS + (1 − ξv)(ωv + u4)Ekv − (αk + u3)Ek − ((1 − u2)ϖvPv + µ + ηk)Ek}

+ M3{(1 − u2)ϖvPvS + (1 − ξk)(ωk + u3)Ekv − (αv + u4)Ev − ((1 − u1)ϖkPk + µ + ηv)Ev}

+ M4{(1 − u2)(1 − qv)ϖvPvEk + (1 − u1)(1 − qk)ϖkPkEv − (ωk + u3)Ekv − (ωv + u4)Ekv

− (αkv + u5)Ekv − (µ + ηkv)Ekv}

+ M5{ηkEk + ξv(ωv + u4)Ekv + (πv + u4)Ikv − (1 − u2)ϖvPvIk − (ρk + u3)Ik − (µ + δk)Ik}

+ M6{ηvEv + ξk(ωk + u3)Ekv + (πk + u3)Ikv − (1 − u1)ϖkPkIv − (ρv + u4)Iv − (µ + δv)Iv}

+ M7{(1 − u2)qvϖvPvEk + (1 − u1)qkϖkPkEv + (1 − u1)ϖkPkIv + (1 − u2)ϖvPvIk + ηkvEkv

− (πk + u3)Ikv − (πv + u4)Ikv − (ρkv + u5)Ikv − (µ + δk + δv)Ikv}

+ M8{γ1Ek + γ2Ik + γ3Ekv + γ4Ikv − (δ1 + u6)Pk}

+ M9{tau1Ev + τ2Iv + τ3Ekv + τ4Ikv − (δ2 + u7)Pv}

+ M10{(αk + u3)Ek + (αv + u4)Ev + (αkv + u5)Ekv + (ρk + u3)Ik + (ρv + u4)Iv

+ (ρkv + u5)Ikv − µR}. (5.2)

Theorem 5.1. There exist an optimal control set {u∗
1 , u∗

2 , u∗
3 , u∗

4 , u∗
5 , u∗

6 , u∗
7 } that mini-

mizes J over U defined by the equations

u∗
1 = max {0,min {1, ū1}} ,

u∗
2 = max {0,min {1, ū2}} ,

u∗
3 = max {0,min {1, ū3}} ,

u∗
4 = max {0,min {1, ū4}} ,

u∗
5 = max {0,min {1, ū5}} ,

u∗
6 = max {0,min {1, ū6}} ,

u∗
7 = max {0,min {1, ū7}} ,
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where

ū1 =
ϖkPk(−SM1 + SM2 − EvM3 + (1 − qk)EvM4 − IvM6 + qkEvM7 + IvM7)

v1
,

ū2 =
ϖvPv(−SM1 + SM3 − EkM2 + (1 − qv)EkM4 − IkM5 + qvEkM7 + IkM7)

v2
,

ū3 =
EkM2 − (1 − ξk)EkvM3 + EkvM4 + IkM5 − ξkEkvM6 − IkvM6 + IkvM7 − EkM10 − IkM10

v3
,

ū4 =
EvM3 − (1 − ξv)EkvM2 + EkvM4 − ξvEkvM5 + IvM6 − IkvM5 + IkvM7 − EvM10 − IvM10

v4
,

ū5 =
EkvM4 − EkvM10 + IkvM7 − IkvM10

v5
,

ū6 =
PkM8

v6
,

ū7 =
PvM9

v7
,

and the adjoint variables M1, M2, · · · , M10 satisfying:

dM1

dt
= (1 − u1)ϖkPkM1 + (1 − u2)ϖvPvM1 + µM1 − (1 − u1)ϖkPkM2 − (1 − u2)ϖvPvM3,

dM2

dt
= −b1 + (αk + u3)M2 + ((1 − u2)ϖvPv + µ + ηk)M2 − (1 − u2)(1 − qv)ϖvPvM4 − ηkM5

−(1 − u2)qvϖvPvM7 − γ1M8 − (αk + u3)M10,

dM3

dt
= −b2 + (αv + u4)M3 + ((1 − u1)ϖkPk + µ + ηv)M3 − (1 − u1)(1 − qk)ϖkPkM4 − ηvM6

−(1 − u1)qkϖkPkM7 − τ1M9 − (αv + u4)M10,

dM4

dt
= −b3 − (1 − ξv)(ωv + u4)M2 − (1 − ξk)(ωk + u3)M3 + (ωk + u3)M4 + (ωv + u4)M4

+(αkv + u5)M4 + (µ + ηkv)M4 − ξv(ωv + u4)M5 − ξk(ωk + u3)M6 − ηkvM7 − γ3M8

−τ3M9 − (αkv + u5)M10,

dM5

dt
= −b4 + (1 − u2)ϖvPvM5 + (ρk + u3)M5 + (µ + δk)M5 − (1 − u2)ϖvPvM7 − γ2M8

−(ρk + u3)M10,

dM6

dt
= −b5 + (1 − u1)ϖkPkM6 + (ρv + u4)M6 + (µ + δv)M6 − (1 − u1)ϖkPkM7 − τ2M9

−(ρv + u4)M10,

dM7

dt
= −b6 − (πv + u4)M5 − (πk + u3)M6 + (πk + u3)M7 + (πv + u4)M7 + (ρkv + u5)M7

+(µ + δk + δv)M7 − γ4M8 − τ4M9 − (ρkv + u5)M10,

dM8

dt
= −b7 + (1 − u1)ϖkSM1 − (1 − u1)ϖkSM2 + (1 − u1)ϖkEvM3

−(1 − u1)(1 − qk)ϖkEvM4 + (1 − u1)ϖkIvM6 − (1 − u1)qkϖkEvM7

−(1 − u1)ϖkIvM7 + (δ1 + u6)M8,

dM9

dt
= −b8 + (1 − u2)ϖvSM1 + (1 − u2)ϖvEkM2 − (1 − u2)ϖvSM3
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−(1 − u2)(1 − qv)ϖvEkM4 + (1 − u2)ϖvIkM5 − (1 − u2)qvϖvEkM7

−(1 − u2)ϖvIkM7 + (δ2 + u7)M9,

dM10

dt
= µM10.

(5.3)

Proof. By the Pontryagin’s maximum principle [21] and the Hamiltonian function (5.2),
the adjoint system is computed by

dM1
dt = −∂H

∂S , dM2
dt = − ∂H

∂Ek
, dM3

dt = ∂H
∂Ev

, dM4
dt = − ∂H

∂Ekv
, dM5

dt = −∂H
∂Ik

,

dM6
dt = −∂H

∂Iv
, dM7

dt = − ∂H
∂Ikv

, dM8
dt = − ∂H

∂Pk
, dM9

dt = − ∂H
∂Pv

, dM10
dt = −∂H

∂R .

These yield the following the adjoint system.

dM1

dt
= (1 − u1)ϖkPkM1 + (1 − u2)ϖvPvM1 + µM1 − (1 − u1)ϖkPkM2 − (1 − u2)ϖvPvM3,

dM2

dt
= −b1 + (αk + u3)M2 + ((1 − u2)ϖvPv + µ + ηk)M2 − (1 − u2)(1 − qv)ϖvPvM4 − ηkM5

−(1 − u2)qvϖvPvM7 − γ1M8 − (αk + u3)M10,

dM3

dt
= −b2 + (αv + u4)M3 + ((1 − u1)ϖkPk + µ + ηv)M3 − (1 − u1)(1 − qk)ϖkPkM4 − ηvM6

−(1 − u1)qkϖkPkM7 − τ1M9 − (αv + u4)M10,

dM4

dt
= −b3 − (1 − ξv)(ωv + u4)M2 − (1 − ξk)(ωk + u3)M3 + (ωk + u3)M4 + (ωv + u4)M4

+(αkv + u5)M4 + (µ + ηkv)M4 − ξv(ωv + u4)M5 − ξk(ωk + u3)M6 − ηkvM7 − γ3M8

−τ3M9 − (αkv + u5)M10,

dM5

dt
= −b4 + (1 − u2)ϖvPvM5 + (ρk + u3)M5 + (µ + δk)M5 − (1 − u2)ϖvPvM7 − γ2M8

−(ρk + u3)M10,

dM6

dt
= −b5 + (1 − u1)ϖkPkM6 + (ρv + u4)M6 + (µ + δv)M6 − (1 − u1)ϖkPkM7 − τ2M9

−(ρv + u4)M10,

dM7

dt
= −b6 − (πv + u4)M5 − (πk + u3)M6 + (πk + u3)M7 + (πv + u4)M7 + (ρkv + u5)M7

+(µ + δk + δv)M7 − γ4M8 − τ4M9 − (ρkv + u5)M10,

dM8

dt
= −b7 + (1 − u1)ϖkSM1 − (1 − u1)ϖkSM2 + (1 − u1)ϖkEvM3

−(1 − u1)(1 − qk)ϖkEvM4 + (1 − u1)ϖkIvM6 − (1 − u1)qkϖkEvM7

−(1 − u1)ϖkIvM7 + (δ1 + u6)M8,

dM9

dt
= −b8 + (1 − u2)ϖvSM1 + (1 − u2)ϖvEkM2 − (1 − u2)ϖvSM3

−(1 − u2)(1 − qv)ϖvEkM4 + (1 − u2)ϖvIkM5 − (1 − u2)qvϖvEkM7

−(1 − u2)ϖvIkM7 + (δ2 + u7)M9,

dM10

dt
= µM10.

(5.4)
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Finding the partial derivatives of the Hamiltonian function (5.2) with respect to each
control variable yields the optimality equations.

∂H

∂u1
=ϖkPkSM1 −ϖkPkSM2 + ϖkPkEvM3 − (1 − qk)ϖkPkEvM4 + ϖkPkIvM6

− qkϖkPkEvM7 −ϖkPkIvM7 + v1u1,

∂H

∂u2
=ϖvPvSM1 −ϖvPvSM3 + ϖvPvEkM2 − (1 − qv)ϖvPvEkM4 + ϖvPvIkM5

− qvϖvPvEkM7 −ϖvPvIkM7 + v2u2,

∂H

∂u3
= − EkM2 + (1 − ξk)EkvM3 − EkvM4 − IkM5 + ξkEkvM6 + IkvM6 − IkvM7 + EkM10

+ IkM10 + v3u3,

∂H

∂u4
= − EvM3 + (1 − ξv)EkvM2 − EkvM4 + ξvEkvM5 − IvM6 + IkvM5 − IkvM7 + EvM10

+ IvM10 + v4u4,

∂H

∂u5
= − EkvM4 + EkvM10 − IkvM7 + IkvM10 + v5u5,

∂H

∂u6
= − PkM8 + v6u6,

∂H

∂u7
= − PvM9 + v7u7.



(5.5)

To obtain optimal controls u∗
i (i = 1, 2, · · · , 7), we replace ui in the system (5.5) with ūi

and equate the right-hand side of the equations of the resulting system to zero then solve
for ūi. Thus, we get

ū1 =
ϖkPk(−SM1 + SM2 − EvM3 + (1 − qk)EvM4 − IvM6 + qkEvM7 + IvM7)

v1
,

ū2 =
ϖvPv(−SM1 + SM3 − EkM2 + (1 − qv)EkM4 − IkM5 + qvEkM7 + IkM7)

v2

ū3 =
EkM2 − (1 − ξk)EkvM3 + EkvM4 + IkM5 − ξkEkvM6 − IkvM6 + IkvM7 − EkM10 − IkM10

v3
,

ū4 =
EvM3 − (1 − ξv)EkvM2 + EkvM4 − ξvEkvM5 + IvM6 − IkvM5 + IkvM7 − EvM10 − IvM10

v4
,

ū5 =
EkvM4 − EkvM10 + IkvM7 − IkvM10

v5
,

ū6 =
PkM8

v6
,

ū7 =
PvM9

v7
.

Using the standard control arguments that involve the bounds of the controls, we come to
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the following conclusion:

u∗
i =


0 if ūi ⩽ 0,
ūi if 0 < ūi < 1,
1 if ūi ⩾ 1,

(5.6)

In compact notation, the system (5.6) can be written as

u∗
1 = max {0,min {1, ū1}} , u∗

5 = max {0,min {1, ū5}} ,

u∗
2 = max {0,min {1, ū2}} , u∗

6 = max {0,min {1, ū6}} ,

u∗
3 = max {0,min {1, ū3}} , u∗

7 = max {0,min {1, ū7}} .

u∗
4 = max {0,min {1, ū4}} ,

 (5.7)

6. Numerical Simulation

Analytical solutions to the optimality system may not always be feasible; in these cases,
numerical approaches are employed to approximate the solutions and illustrate the results.
The optimality system, which consists of the state system (2.1), adjoint system (5.4),
control characterization (5.7), and corresponding initial conditions, is solved iteratively to
produce the numerical simulation results shown in this section. The fourth-order Runge-
Kutta algorithm is used to solve the state and adjoint equations using the parameter values
in Table (1).

Table 1: Parameter values

Parameter Value Source Parameter Value Source

Λ 0.00133 [22] ηv 0.05 Assumed
ϖk 0.0007954551 Assumed ηkv 0.01 Assumed
ϖv 0.000209819 Assumed ρk 0.005 Assumed
µ 0.00056 [22] ρv 0.0433 Assumed
δk 0.0001 Assumed ρkv 0.0052 Assumed
δv 0.01 Assumed αk 0.001 Assumed
δ1 0.0900982 Assumed αv 0.001 Assumed
δ2 0.19009821 Assumed αkv 0.013 Assumed
qk 0.3 Assumed γ1 0.0587365 Assumed
qv 0.3 Assumed γ2 0.0487364 Assumed
ξk 0.00911 Assumed γ3 0.0091 Assumed
ξv 0.009 Assumed γ4 0.00921 Assumed
ωk 0.09 Assumed τ1 0.1 Assumed
ωv 0.08 Assumed τ2 0.1 Assumed
πk 0.004 Assumed τ3 0.191 Assumed
πv 0.0039 Assumed τ4 0.12 Assumed
ηk 0.01 Assumed
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The optimal strategy for considerably reducing the spread of the CBD-CLR co-infection is
investigated among the following control strategies:

(i) Control with prevention of CBD and CLR infections (u1, u2)

(ii) Control with Treatment of CBD, CLR and CBD-CLR co-infection (u3, u4, u5)

(iii) Control with elimination of Colletotrichum kahawae and Hemileia vastatrix pathogens
(u6, u7)

(iv) Control with prevention of CBD and CLR infections and Treatment of CBD, CLR and
CBD-CLR co-infection (u1, u2, u3, u4, u5)

(v) Control with prevention of CBD and CLR infections and elimination of Colletotrichum
kahawae and Hemileia vastatrix pathogens (u1, u2, u6, u7)

(vi) Control with Treatment of CBD, CLR and CBD-CLR co-infection and elimination of
Colletotrichum kahawae and Hemileia vastatrix pathogens (u3, u4, u5, u6, u7)

(vii) Using all interventions (u1, u2, u3, u4, u5, u6, u7)

For the simulation of the model with optimal control, we made the following assumptions:
b1 = 5, b2 = 4, b3 = 9, b4 = 6, b5 = 6, b6 = 11, b7 = 6, b8 = 5, v1 = 100, v2 = 100, v3 = 100,
v4 = 100, v5 =, v6 = 100 and v7 = 100. In addition, we utilized the initial: S0 = 10000,
Ek0 = 500, Ev0 = 101, Ekv0 = 2002, Ik0 = 100, Iv0 = 10, Ikv0 = 12, Pk0 = 1600, Pv0 = 1601,
and R0 = 10

6.1. Numerical Simulation Results and Discussion
6.1.1. Strategy 1: Control with prevention of CBD and CLR infections (u1, u2)

In this strategy, the objective function J is optimized using both prevention of CBD in-
fection u1 and prevention of CLR infection u2 while other interventions (u3, u4, u5, u6, u7)
are set to zero. In Figure 2(a), it is seen that prevention has a significant impact on con-
trolling the emergence of new infection cases of CBD and CLR infections since the solution
curve of the susceptible coffee plants S(t) without control converges to the lower bound at
a higher rate than that with controls. From Figures 2(d), 2(g), 2(h) and 2(i) we observed
a positive effect of prevention since the solution curves of the co-exposed coffee plants
Ekv(t), the co-infected coffee plants Ikv(t), Colletotrichum kahawae pathogens Pk(t) and
Hemileia vastatrix pathogens Pv(t) without control continue rising and those with controls
converge to the lower bound. This implies that prevention alone is effective in reducing
co-infected coffee plants Ikv(t), Colletotrichum kahawae pathogens Pk(t) and Hemileia vas-
tatrix pathogens Pv(t) as result of reduced new infection cases which in turn lead reduced
shedding of pathogens. The effect of this strategy is observed in Figures 2(b) and 2(c),
where the solution curves with control rise steadily to certain levels which are lower than
the peaks of the solution curves without control and start falling to the lower bound. We
also noticed a steady increase in the number of infection cases of CBD-infected coffee
plants Ik(t), the CLR-infected coffee plants Iv(t) in Figure 2(e) and Figure 2(f) respec-
tively, implying that this strategy is not effective in controlling infected coffee plants in
Ik(t) and Iv(t) compartments. This can be related to the lack of control measures, such as
treatment in these compartments.



Nyaberi et al / An Optimal Control Model for CBD and CLR Co-infection 15

0 0.5 1 1.5 2 2.5 3
0

2000

4000

6000

8000

10000
(a)

Time (months)

S
(t

)

 

 

With control
Without control

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000

2500
(b)

Time (months)

E
k(t

)

 

 

With control
Without control

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000
(c)

Time (months)

E
v(t

)

 

 

With control
Without control

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000

2500
(d)

Time (months)

E
kv

(t
)

 

 

With control
Without control

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

1400
(e)

Time (months)

I k(t
)

 

 

With control
Without control

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000
(f)

Time (months)

I v(t
)

 

 

With control
Without control

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000

2500
(g)

Time (months)

I kv
(t

)

 

 

With control
Without control

0 0.5 1 1.5 2 2.5 3
1500

1600

1700

1800

1900

2000

2100

2200

2300

2400
(h)

Time (months)

P
k(t

)

 

 

With control
Without control

0 0.5 1 1.5 2 2.5 3
1100

1200

1300

1400

1500

1600

1700

1800
(i)

Time (months)

P
v(t

)

 

 

With control
Without control

Figure 2: Graphs showing the effect of prevention of CBD and CLR infections (u1, u2) on
CBD and CLR co-infection model
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6.1.2. Strategy 2: Control with treatment of CBD, CLR and CBD-CLR co-infection (u3, u4, u5)
In this strategy, the objective function J is optimized using both treatment of CBD

infection u3, CLR infection u4 and CBD-CLR co-infection u5 while other interventions
(u1, u2, u6, u7) are set to zero. In Figure 3(a), we observed the solution curves of the
susceptible coffee plants S(t) without controls and that of the susceptible coffee plants
S(t) with controls; they almost converge to zero at the same rate whereby the S(t) with
controls is slightly above that of S(t) without controls. This implies that this strategy is
inefficient in reducing new CBD and CLR infection cases. From Figures 3(d) and 3(i), we
observed a continuous decrease in numbers in the solution curves with controls. This may
be connected to the effectiveness of the strategy. In Figures 3(b), 3(c), 3(e), 3(f), 3(g)
and 3(h), we noticed a slight rise of solution curves with controls to a level below that of
curves without controls and followed by a steady decrease hence converging to zero. This
suggests that strategy 2 effectively controls the cases at the end of the given period but
not at the beginning in six compartments.

6.1.3. Strategy 3: Control with elimination of Colletotrichum kahawae and Hemileia vasta-
trix pathogens (u6, u7)

In this strategy, the objective function J is optimized by using the elimination of Col-
letotrichum kahawae pathogens u6 and Hemileia vastatrix pathogens u7. At the same time,
other interventions are set to zero. The impact of eliminating pathogens is noticed in
Figure 4(a) since the rate at which the solution curve with controls converges to zero is
lower than that of the curve without control. Hence, this strategy can be used to reduce
cases. Figures 4(d), 4(h) and 4(i) demonstrate that this strategy is effective in reducing
the co-exposed coffee plants, Colletotrichum kahawae pathogens and Hemileia vastatrix
pathogens respectively. Figures 4(b), 4(c) and 4(g) have shown that this strategy cannot
contain the infections at the onset of the disease since the curves rise first and then fall.
Also, from Figures 4(e) and 4(f), we observed that this strategy is completely not effective
in reducing the CBD-infected coffee plants Ik(t) and the CLR-infected coffee plants Iv(t)
since their solution curves continue rising.

6.1.4. Strategy 4: Control with prevention of CBD and CLR infections and Treatment of CBD,
CLR and CBD-CLR co-infection (u1, u2, u3, u4, u5)

Prevention of CBD and CLR infections and Treatment of CBD, CLR, and CBD-CLR co-
infection (u1, u2, u3, u4, u5) are used to optimize the objective function J while u6 and
u7 are set equal to zero. In Figures 5(a), we observed that this strategy has a positive
impact on controlling the emergence of new infection cases of CBD and CLR infections
since the solution curve of the susceptible coffee plants S(t) with control converges to
zero at a lower rate. We observed positive results in Figures 5(d), 5(g), 5(h) and 5(i)
since the solution curves with controls steadily converge to zero. From Figures 5(b), 5(c),
5(e) and 5(f), we observed a slight increase of cases for the solution curves with controls
at the beginning of a given infection period followed by a decrease which converges to
zero. This suggests that this strategy effectively controls infection cases since the cases
increase slightly and eventually converge to zero.
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Figure 3: Graphs effect of treatment of CBD, CLR, and CBD-CLR co-infection (u3, u4, u5)
on CBD and CLR co-infection model
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Figure 4: Graphs showing the elimination of Colletotrichum kahawae and Hemileia vasta-
trix pathogens (u6, u7)
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Figure 5: Graphs showing the effect of prevention of CBD and CLR infections and Treat-
ment of CBD, CLR, and CBD-CLR co-infection (u1, u2, u3, u4, u5) on CBD and CLR
co-infection model



Nyaberi et al / An Optimal Control Model for CBD and CLR Co-infection 20

0 0.5 1 1.5 2 2.5 3
0

2000

4000

6000

8000

10000
(a)

Time (months)

S
(t

)

 

 

With control
Without control

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000

2500
(b)

Time (months)

E
k(t

)

 

 

With control
Without control

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000
(c)

Time (months)

E
v(t

)

 

 

With control
Without control

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000

2500
(d)

Time (months)
E

kv
(t

)

 

 

With control
Without control

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

1400
(e)

Time (months)

I k(t
)

 

 

With control
Without control

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000
(f)

Time (months)

I v(t
)

 

 

With control
Without control

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000

2500
(g)

Time (months)

I kv
(t

)

 

 

With control
Without control

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000

2500
(h)

Time (months)

P
k(t

)

 

 

With control
Without control

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

1400

1600

1800
(i)

Time (months)

P
v(t

)

 

 

With control
Without control

Figure 6: Graphs showing the effect of prevention of CBD and CLR infections and elimina-
tion of Colletotrichum kahawae and Hemileia vastatrix pathogens (u1, u2, u6, u7) on CBD
and CLR co-infection model



Nyaberi et al / An Optimal Control Model for CBD and CLR Co-infection 21

6.1.5. Strategy 5: Control with prevention of CBD and CLR infections and elimination of
Colletotrichum kahawae and Hemileia vastatrix pathogens (u1, u2, u6, u7)

Prevention of CBD and CLR infections and elimination of Colletotrichum kahawae and
Hemileia vastatrix pathogens (u1, u2, u6, u7) are used to optimize the objective function
J while (u3, u4, u5) are set to zero. We observed positive results in Figure 6(a) since this
strategy significantly reduced the number of new infection cases. We also observed posi-
tive results in Figures 6(d), 6(g), 6(h) and 6(i) since this strategy is effective in reducing
the numbers of the co-exposed coffee plants Ekv(t), the co-infected coffee plants Ikv(t),
Colletotrichum kahawae pathogens Pk(t) and Hemileia vastatrix pathogens Pv(t) respec-
tively. In Figures 6(b), 6(c), 6(e) and 6(f), we noticed an increase of cases for the solution
curves with controls at the beginning of a given period followed by a decrease.

6.1.6. Strategy 6: Control with the treatment of CBD, CLR and CBD-CLR co-infection and
elimination of Colletotrichum kahawae and Hemileia vastatrix pathogens
(u3, u4, u5, u6, u7)

In this strategy, treatment of CBD, CLR and CBD-CLR co-infection and elimination of
Colletotrichum kahawae and Hemileia vastatrix pathogens (u3, u4, u5, u6, u7) are used
to optimize the objective function J while (u1, u2 are set to zero. From Figure 7(a), we
noticed that this strategy is moderately able to reduce the number of new infection cases
since the solution curve of S(t) with controls is slightly above that of S(t) without con-
trols. This is connected to treating CBD, CLR, and CBD-CLR co-infection and eliminating
pathogens. We noted positive results in Figures 7(d), 7(g), 7(h) and 7(i) since the solu-
tion curves with controls steadily converge to zero. In Figures 7(b), 7(c), 7(e) and 7(f),
we observed that the solution curves with controls rise to certain levels then fall as they
converge to zero. This suggests that this strategy is not effective in controlling the cases
at the beginning of a given infection period.

6.1.7. Strategy 7: Using all interventions (u1, u2, u3, u4, u5, u6, u7)
The objective function J is optimized using all control mechanisms (u1, u2, u3, u4, u5,

u6, u7) in this strategy. We observed that Figures 8(a), 8(b), 8(c), 8(d), 8(e), 8(f), 8(g)
are similar to the corresponding figures in Figure 5. This suggests that the effectiveness
of strategies 4 and 7 is almost the same. The only difference is that Figures 8(h) and
8(i) are not similar to the corresponding figures in Figure 5. This is because the solution
curves with controls in Figures 8(h) and 8(i), converge to zero at a higher rate than those
of Figures 5(h) and 5(i). This suggests that strategy 7 is more effective in reducing the
pathogens than strategy 4.
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Figure 7: Graphs showing the effect of treatment of CBD, CLR and CBD-CLR co-
infection and elimination of Colletotrichum kahawae and Hemileia vastatrix pathogens
(u3, u4, u5, u6, u7) on CBD and CLR co-infection model
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Figure 8: Graphs showing the effect of all interventions (u1, u2, u3, u4, u5, u6, u7) on
CBD and CLR co-infection model
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7. Conclusion

This paper develops a mathematical model for the co-infection of CBD and CLR with
the prevention of CBD infection, prevention of CLR infection, the treatment of CBD-
infected coffee plants, the treatment of CLR-infected coffee plants, the treatment of CBD-
CLR Co-infected coffee plants, elimination of Colletotrichum kahawae pathogens and elim-
ination of Hemileia vastatrix pathogens. The model’s qualitative examination reveals that
its solution is bounded and positive. The optimal control problem is formulated using Pon-
tryagin’s maximum principle, and the conditions for optimal disease control are analyzed.
The optimality system is created, and existence requirements for optimal control are iden-
tified. The elimination of CBD-CLR co-infection is recommended using seven strategies,
with each strategy’s effectiveness being examined. The recommended strategies are nu-
merically examined, and the outcomes are graphically presented. The outcomes indicate
that combining all interventions is the best strategy for slowing the spread of the CBD-CLR
co-infection.
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