# SABA Publishing

## Journal of Mathematical Analysis and Modeling

jmam.sabapub.com ISSN 2709-5924 J Math Anal & Model (2023)4(2): 16-25 doi:10.48185/jmam.v4i2.826

# Decomposable positive map from $\mathbb{M}_3(\mathbb{C})$ to $\mathbb{M}_2(\mathbb{M}_2(\mathbb{C}))$

C. A. WINDA  $a,* \bigcirc$ , N. B. OKELO<sup>b</sup>, P. M. OMOKE <sup>c</sup>

<sup>a,b,c</sup> Department of Pure and Applied Mathematics, Jaramogi Oginga Odinga University of Science and Technology, Kenya

• Received: 19 August 2023

• Accepted: 5 December 2023

• Published Online: 30 December 2023

#### **Abstract**

In most literature, the decomposition of positive maps from  $\mathbb{M}_3$  to  $\mathbb{M}_2$  are discussed where the matrix elements are complex numbers. In this paper we construct a positive maps  $\varphi_{(\mu,c_1,c_2)}$  from  $\mathbb{M}_3(\mathbb{C})$  to  $\mathbb{M}_2(\mathbb{M}_2(\mathbb{C}))$ . The Choi matrices for complete positivity and complete copositivity are visualized as tensor matrix  $\mathbb{M}_3 \otimes \mathbb{M}_2$  with  $\mathbb{M}_2(\mathbb{C})$  as the entry elements. The construction allows us to describe decomposability on positive semidefinite matrices.

Keywords: Positive maps, 2-positivity, Choi matrix, completely positivity, decomposable maps.

2010 MSC: 47B65, 15A60, 15A63, 15B48.

#### 1. Introduction

Positive linear maps on  $C^*$ -algebras, particularly those of finite dimensions have been very important in quantum information theory and quantum channels. Stinespring [6] initiated the concept of completely positive maps with his representation(or dilation) theorem. Arveson in [1] and [2] found the application of completely positive maps in operator theory and further developed extensively in operator algebra and mathematical physics. Woronowicz [11], Theorem 3.1.6 showed that every positive linear map  $\varphi$  form  $M_2(\mathbb{C})$  to  $M_m(\mathbb{C})$  is decomposable if and only if  $m \leq 3$ . In [7], [8] and [9] Theorem 1, Størmer gives conditions for decomposability of positive maps; For  $\mathcal{A}$  be a  $C^*$ -algebra and linear map  $\varphi$  is decomposable if and only if for all  $n \in \mathbb{N}$  whenever  $(x_{ij})$  and  $(x_{ji})$  belong to  $M_n(\mathcal{A})^+$ . Choi [4] gave the first example of indecomposable map, for a 3-dimension case.

Yang, Leung and Tang [12] showed that every 2-positive linear map from  $\mathbb{M}_3(\mathbb{C})$  to  $\mathbb{M}_3(\mathbb{C})$  is decomposable. Though we are motivated by the question in [12] that enquire if there exist indecomposable 2-positive maps from  $\mathbb{M}_3(\mathbb{C})$  to  $\mathbb{M}_4(\mathbb{C})$ ), we show there is a decomposable positive map from  $\mathbb{M}_3(\mathbb{C})$  to  $\mathbb{M}_2(\mathbb{M}_2(\mathbb{C}))$ .

<sup>\*</sup>Corresponding author: windac758@gmail.com

In most literature, the authors have studied case  $\mathbb{M}_3$  to  $\mathbb{M}_2$  where the matrix elements are complex numbers. In this paper we construct a positive maps  $\phi_{(\mu,c_1,c_2)}$  from  $\mathbb{M}_3(\mathbb{C})$  to  $\mathbb{M}_2$  where the matrix elements of  $\mathbb{M}_2$  is a  $2\times 2$  positive matrix  $\mathbb{M}_2(\mathbb{C})$ . We find conditions on the triplet  $\mu$ ,  $c_1$ ,  $c_2$  for which the map is positive, completely positive, 2-positive and decomposable.

A matrix  $X \in \mathbb{M}_n(\mathbb{C})$  is called positive semi-definite if it is hermitian and all its eigenvalues are positive. It is denoted as  $X \geqslant 0$ . The set of all positive semi-definite matrices in  $\mathbb{M}_n(\mathbb{C})$  is denoted by  $\mathbb{M}_n(\mathbb{C})^+$ . Let the identity map on and the transpose map on  $\mathbb{M}_n(\mathbb{C})^+$  be denoted by  $\mathbb{J}_n$  and  $\tau_n$  respectively. A linear map  $\phi$  is from  $\mathbb{M}_n(\mathbb{C})$  to  $\mathbb{M}_m(\mathbb{C})$  is called positive if  $\phi(\mathbb{M}_n(\mathbb{C}))^+ \subseteq \mathbb{M}_m(\mathbb{C})^+$ . A map  $\phi$  from  $\mathbb{M}_n(\mathbb{C})$  to  $\mathbb{M}_m(\mathbb{C})$  is k-positive if  $\mathbb{J} \otimes \phi : \mathbb{M}_k \otimes \mathbb{M}_n \longrightarrow \mathbb{M}_k \otimes \mathbb{M}_m$  is positive. On the other hand,  $\phi$  from  $\mathbb{M}_n(\mathbb{C})$  to  $\mathbb{M}_m(\mathbb{C})$  is k-copositive if the map  $\tau_n \otimes \phi : \mathbb{M}_k \otimes \mathbb{M}_n \longrightarrow \mathbb{M}_k \otimes \mathbb{M}_n$  is positive. The Choi result in [3] affirms that the positive map  $\phi$  is completely positive if and only if it's Choi matrix is positive semidefinite.

## 2. Positivity

Let  $X \in \mathbb{M}_n(\mathbb{C})$  be a positive semidefinite matrix denoted by  $X = [x_i \bar{x}_j]$ , where  $x_i = (x_1, \dots, x_n)^T \in \mathbb{C}^n$  is a column vector and  $\bar{x}_j$  is the transpose conjugate(row vector) of  $x_i$ . We denote the diagonal entries  $x_n \bar{x}_n$  by  $\alpha_n$ .

Let  $X \in \mathbb{M}_3$  be a positive semidefinite matrix with complex entries. Let  $0 < \mu \leqslant 1$ ,  $c_1, c_2 > 0$  and  $r \in \mathbb{N}$ . Then we define the family of positive maps  $\varphi_{(\mu,c_1,c_2)}$  as follows:

$$\phi_{(\mu,c_1,c_2)}: \mathbb{M}_3(\mathbb{C})^+ \longrightarrow \mathbb{M}_2(\mathbb{M}_2)\mathbb{C})^+.$$

$$X \mapsto \begin{pmatrix} P_1^{\mu} & -c_1 x_1 \bar{x}_2 & 0 & -\mu x_1 \bar{x}_3 \\ -c_1 x_2 \bar{x}_1 & P_2^{\mu} & -c_2 x_2 \bar{x}_3 & 0 \\ \hline 0 & -c_2 x_3 \bar{x}_2 & P_3^{\mu} & 0 \\ -\mu x_3 \bar{x}_1 & 0 & 0 & P_4^{\mu} \end{pmatrix}, \tag{2.1}$$

where

$$\begin{array}{lcl} P_1^{\mu} & = & \mu^{-r}(\alpha_1 + c_1\alpha_2\mu^r + c_2\alpha_3\mu^r) \\ P_2^{\mu} & = & \mu^{-r}(\alpha_2 + c_1\alpha_3\mu^r + c_2\alpha_1\mu^r) \\ P_3^{\mu} & = & \mu^{-r}(\alpha_1 + \alpha_2 + \alpha_3) \\ P_4^{\mu} & = & \mu^{-r}(\alpha_3 + c_1\alpha_1\mu^r + c_2\alpha_2\mu^r) \end{array}$$

The matrix  $\phi_{(\mu,c_1,c_2)}(X)$  is visualized as a  $2 \times 2$  block matrix in  $\mathbb{M}_2(\mathbb{M}_2(\mathbb{C}))$ . The linear map  $\phi$  is uniquely determined by the polynomial function;

$$F(z,x) := v \phi(x_i \bar{x}_i) v^{\mathsf{T}}$$

as a biquadratic function in  $x := (x_1, x_2, x_3)$  and  $v := (v_1, v_2, v_3, v_4)$ . The map  $\phi$  is positive if and only if the biquadratic form F(z, x) is a sum of squares (positive semi-definite).

We characterize of the positivity of the map  $\phi$  for  $v = (v_1, v_2, v_3, v_4) \in \mathbb{R}^4$  and  $t \in \mathbb{C}$ .

**Lemma 2.1.** Let  $0 < \mu < 1$  and  $c_1, c_2 \geqslant 0$ . Then the function

$$\begin{split} F(\nu_1,\nu_2,\nu_3,\nu_4,t) & = & \mu^{-r}(1+c_1\mu^r+c_2|t|\mu^r)\nu_1^2 + \mu^{-r}(1+c_1|t|\mu^r+c_2\mu^r)\nu_2^2 + \mu^{-r}(2+|t|)\nu_3^2 \\ & + \mu^{-r}(|t|+c_1\mu^r+c_2\mu^r)\nu_4^2 - 2c_1\nu_1\nu_2 - 2c_2\Re(t)\nu_2\nu_3 - 2\mu\Re(t)\nu_1\nu_4 \end{split}$$

is positive semidefinite for every  $v_1, v_2, v_3, v_4 \in \mathbb{R}$  and  $t \in \mathbb{C}$  if and only if the following two conditions are satisfied:

$$\mu^{-r} > c_1.$$
 (2.2)

$$\mu^{-r} > c_2.$$
 (2.3)

*Proof.* If  $v_1 = 0$ . Then,  $F(0, v_2, v_3, v_4, t)$ 

$$\begin{split} &= \quad \mu^{-r}(1+c_1|t|\mu^r+c_2\mu^r)\nu_2^2 + \mu^{-r}(2+|t|)\nu_3^2 + \mu^{-r}(|t|+c_1\mu^r+c_2\mu^r)\nu_4^2 - 2c_2\mathfrak{R}(t)\nu_2\nu_3 \\ &= \quad (c_1|t|+c_2)\nu_2^2 + 2\mu^{-r}\nu_3^2 + \mu^{-r}(|t|+c_1\mu^r+c_2\mu^r)\nu_4^2 + (\mu^{-r}\nu_2^2 - 2\nu_2\nu_3c_2\mathfrak{R}(t) + \mu^{-r}|t|\nu_3^2) \\ &= \quad (c_1|t|+c_2)\nu_2^2 + \mu^{-r}(|t|+c_1\mu^r+c_2\mu^r)\nu_4^2 + \mu^{-r}(\nu_2-\mu^rc_2\mathfrak{R}(t)\nu_3)^2 \\ &+ \quad (2\mu^{-r}+\mu^{-r}|t|-\mu^rc_2^2\mathfrak{R}(t)^2)\nu_3^2. \end{split}$$

 $F(0, v_2, v_3, v_4, t)$  is positive when the coefficient of  $v_3^2$  satisfy the inequality,

$$\mu^{-2r}(2+|t|) - c_2^2 \Re^2(t)^2 \geqslant 0. \tag{2.4}$$

Letting t = x + iy. We have that,

$$\begin{array}{lcl} \mu^{-r}(2+|t|) - \mu^{r}c_{2}^{2}\mathfrak{R}^{2}(t)^{2} & = & 2\mu^{-2r} + (\mu^{-2r}(|x|^{2}+|y|^{2}) - x^{2}c_{2}^{2}) \\ & = & 2\mu^{-2r} + \mu^{-2r}|y|^{2} + |x|^{2}(\mu^{-2r} - c_{2}^{2}) \end{array}$$

is positive whenever  $\mu^{-r} \geqslant c_2$  hold.

$$\begin{split} &\text{If } \nu_2 = 0. \text{ Then }, \\ &\text{F}(\nu_1,0,\nu_3,\nu_4,t) \\ &= & \mu^{-r}(1+c_1\mu^r+c_2|t|\mu^r)\nu_1^2 + \mu^{-r}(2+|t|)\nu_3^2 + \mu^{-r}(|t|+c_1\mu^r+c_2\mu^r)\nu_4^2 - 2\mu \mathfrak{R}(t)\nu_1\nu_4 \\ &= & \mu^{-r}(c_1\mu^r+c_2|t|\mu^r)\nu_1^2 + \mu^{-r}(2+|t|)\nu_3^2 + \mu^{-r}(c_1\mu^r+c_2\mu^r)\nu_4^2 + (\mu^{-r}\nu_1^2-2\nu_1\nu_4\mu\mathfrak{R}(t) + \mu^{-r}|t|\nu_4^2) \\ &= & \mu^{-r}(c_1\mu^r+c_2|t|\mu^r)\nu_1^2 + \mu^{-r}(2+|t|)\nu_3^2 + \mu^{-r}(c_1\mu^r+c_2\mu^r)\nu_4^2 \\ &+ & \mu^{-r}(\nu_1-\mu^{1+r}\mathfrak{R}(t)\nu_4)^2 + \mu^{-r}(|t|-\mu^{2+2r}\mathfrak{R}(t)^2)\nu_4^2 \\ &\geqslant & 0. \end{split}$$

If  $v_3 = 0$ . Then,  $F(v_1, v_2, 0, v_4, t)$ 

$$\begin{array}{ll} = & \mu^{-r}(1+c_1\mu^r+c_2|t|\mu^r)\nu_1^2+\mu^{-r}(1+c_1|t|\mu^r+c_2\mu^r)\nu_2^2+\mu^{-r}(|t|+c_1\mu^r+c_2\mu^r)\nu_4^2 \\ - & 2c_1\nu_1\nu_2-2\mu\mathfrak{R}(t)\nu_1\nu_4 \\ = & c_2|t|\nu_1^2+\mu^{-r}(1+c_2\mu^r)\nu_2^2+(c_1+c_2)\nu_4^2+(\mu^{-r}\nu_1^2-2\nu_1\nu_4\mu\mathfrak{R}(t)+\mu^{-r}|t|\nu_4^2)+c_1(\nu_1^2-2\nu_1\nu_2+|t|\nu_2^2) \\ = & c_2|t|\nu_1^2+\mu^{-r}(1+c_2\mu^r)\nu_2^2+(c_1+c_2)\nu_4^2+\mu^{-r}(\nu_1-\mu^{1+r}\mathfrak{R}(t)\nu_4)^2 \\ + & \mu^{-r}(|t|-\mu^{2+2r}\mathfrak{R}(t)^2)\nu_4^2+c_1(\nu_1-\nu_2)^2+c_1(|t|^2-1)\nu_2^2 \end{array}$$

 $F(\nu_1,\nu_2,0,\nu_4,t)$  is positive whenever  $\mu^{-r}-c_1\geqslant 0$  hold. That is, the coefficients of  $\nu_2^2$  is such that,

$$\mu^{-r} + c_2 + c_1(|t| - 1) = (\mu^{-r} - c_1) + c_2 + c_1|t| \ge 0.$$
 (2.5)

If 
$$v_4 = 0$$
. Then,  $F(v_1, v_2, v_3, 0, t)$ 

$$\begin{array}{ll} = & \mu^{-r}(1+c_1\mu^r+c_2|t|\mu^r)\nu_1^2+\mu^{-r}(1+c_1|t|\mu^r+c_2\mu^r)\nu_2^2+\mu^{-r}(2+|t|)\nu_3^2-2c_1\nu_1\nu_2-2c_2\Re(t)\nu_2\nu_3\\ = & \mu^{-r}(1+c_2|t|\mu^r)\nu_1^2+c_2\nu_2^2+2\mu^{-r}\nu_3^2+c_1(\nu_1^2-2\nu_1\nu_2+|t|\nu_2^2)+(\mu^{-r}\nu_2^2-2c_2\Re(t)\nu_2\nu_3+\mu^{-r}|t|\nu_3^2)\\ = & \mu^{-r}(1+c_2|t|\mu^r)\nu_1^2+c_2\nu_2^2+2\mu^{-r}\nu_3^2+c_1(\nu_1-\nu_2)^2+c_1(|t|^2-1)\nu_2^2\\ + & \mu^{-r}(\nu_2-\mu^rc_2\Re(t)\nu_3)^2+(\mu^{-r}|t|-\mu^rc_2^2\Re(t)^2)\nu_3^2\\ > & 0 \end{array}$$

whenever the inequalities (2.4) and (2.5) hold.

Now let  $v_i \neq 0$ , i = 1, 2, 3, 4 and assume that there exist  $v_1, v_2, v_3, v_4 \in \mathbb{R}$  and  $t \in \mathbb{C}$  such that  $v_1 \neq 0$  and  $F(v_1, v_2, v_3, v_4, t) < 0$ . Since  $0 < \mu < 1$  and  $c_1, c_2 \geqslant 0$ . Then,  $F(v_1, v_2, v_3, v_4, t)$ 

$$\begin{array}{ll} = & \mu^{-r}(1+c_1\mu^r+c_2|t|\mu^r)\nu_1^2+\mu^{-r}(1+c_1|t|\mu^r+c_2\mu^r)\nu_2^2+\mu^{-r}(2+|t|)\nu_3^2+\mu^{-r}(|t|+c_1\mu^r+c_2\mu^r)\nu_4^2\\ & -2c_1\nu_1\nu_2-2c_2\Re(t)\nu_2\nu_3-2\mu\Re(t)\nu_1\nu_4\\ = & \mu^{-r}\nu_1^2+\mu^{-r}\nu_2^2+2\mu^{-r}\nu_3^2+(c_1+c_2)\mu^{-r}\nu_4^2+c_1(\nu_1-\nu_2)^2+c_1(|t|^2-1)\nu_2^2+\mu^{-r}(\nu_2-\mu^rc_2\Re(t)\nu_3)^2\\ & +(\mu^{-r}|t|-\mu^rc_2^2\Re(t)^2)\nu_3^2+\mu^{-r}(\nu_1-\mu^{1+r}\Re(t)\nu_4)^2+(\mu^{-r}|t|-\mu^{2+2r}\Re(t)^2)\nu_4^2\\ < & 0 \end{array}$$

is a contradiction when the inequalities (2.4) and (2.5) hold . Thus  $F(v_1, v_2, v_3, v_4, t) \ge 0$  for every  $v_1, v_2, v_3, v_4 \in \mathbb{R}$  and  $t \in \mathbb{C}$ .

**Proposition 2.2.** The linear map  $\phi_{(\mu,c_1,c_2)}$  is positive provided Lemma 2.1 is satisfied. are satisfied.

*Proof.* We need to show that,

$$\Phi\left( egin{array}{ccc} \left(egin{array}{ccc} q \ s \ t \end{array} 
ight) & \left(egin{array}{cccc} ar{q} & ar{s} & ar{t} \end{array} 
ight) \end{array} 
ight) \in \mathbb{M}_4^+$$

for every  $q, s, t \in \mathbb{C}$ .

Thai is.

$$\begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \end{pmatrix}^{1} \begin{pmatrix} P_{1}^{\mu} & -c_{1}q\bar{s} & 0 & -\mu q\bar{t} \\ -c_{1}s\bar{q} & P_{2}^{\mu} & -c_{2}s\bar{t} & 0 \\ \hline 0 & -c_{2}t\bar{s} & P_{3}^{\mu} & 0 \\ -\mu t\bar{q} & 0 & 0 & P_{4}^{\mu} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \end{pmatrix} \geqslant 0$$
 (2.6)

where,

$$\begin{array}{lcl} P_1^{\mu} & = & \mu^{-r}(|q|^2 + c_1|s|^2\mu^r + c_2|t|\mu^r) \\ P_2^{\mu} & = & \mu^{-r}(|s|^2 + c_1|t|\mu^r + c_2|q|^2\mu^r) \\ P_3^{\mu} & = & \mu^{-r}(|q|^2 + |s|^2 + |t|) \\ P_4^{\mu} & = & \mu^{-r}(|t| + c_1|q|^2\mu^r + c_2|s|^2\mu^r) \end{array}$$

for every  $v_1, v_2, v_3, v_4 \in \mathbb{R}$  and  $q, s, t \in \mathbb{C}$ .

Taking q = s = 0.

$$F(\nu_1,\nu_2,\nu_3,\nu_4,t) = c_1 \mu^{-r} |t| \nu_1^2 + c_1 |t| \nu_2^2 + \mu^{-r} |t| \nu_3^2 + \mu^{-r} |t| \nu_4^2 \geqslant 0.$$

$$\begin{split} &\text{If } q=0. \text{ Since } 0<\mu\leqslant 1, \text{ by inequality (2.4),} \\ &F(\nu_1,\nu_2,\nu_3,\nu_4,t) \\ &= (c_1+c_2|t|)\nu_1^2+\mu^{-r}(1+c_1|t|)\nu_2^2+\mu^{-r}(1+|t|)\nu_3^2+(\mu^{-r}|t|+c_2)\nu_4^2-2c_2\Re(t)\nu_2\nu_3\\ &\geqslant 0. \\ &\text{If } s=0,\\ &F(\nu_1,\nu_2,\nu_3,\nu_4,t) \\ &= \mu^{-r}(1+c_2|t|)\nu_1^2+(c_1|t|+c_2)\nu_2^2+\mu^{-r}(1+|t|)\nu_3^2+\mu^{-r}(|t|+c_1\mu^r)\nu_4^2-2\mu\Re(t)\nu_1\nu_4\\ &= c_2|t|\nu_1^2+(c_1|t|+c_2)\nu_2^2+\mu^{-r}(1+|t|)\nu_3^2+c_1\nu_4^2+\mu^{-r}(\nu_1-\mu^{1+r}\Re(t)\nu_4)^2\\ &+ (\mu^{-r}|t|-\mu^{2+r}\Re(t)^2)\nu_4^2\\ &\geqslant 0. \end{split}$$

If q and s are not equal to zero. Assume that q = s = 1. Then, by Lemma 2.1

$$z^{\mathsf{T}} \Phi \left( \begin{array}{c} 1\\1\\t \end{array} \right) \quad \left( \begin{array}{cccc} 1&1&\bar{\mathfrak{t}} \end{array} \right) \quad z \geqslant 0$$

since the polynomial,

$$\begin{split} \mathsf{F}(\nu_1,\nu_2,\nu_3,\nu_4,t) &= \mu^{-r}(1+c_1\mu^r+c_2|t|\mu^r)\nu_1^2 + \mu^{-r}(1+c_1|t|\mu^r+c_2\mu^r)\nu_2^2 + \mu^{-r}(2+|t|)\nu_3^2 \\ &+ \mu^{-r}(|t|+c_1\mu^r+c_2\mu^r)\nu_4^2 - 2c_1\nu_1\nu_2 - 2c_2\Re(t)\nu_2\nu_3 - 2\mu\Re(t)\nu_1\nu_4 \\ &= \mu^{-r}\nu_1^2 + \mu^{-r}\nu_2^2 + c_1(\nu_1-\nu_2)^2 + c_1(|t|^2-1)\nu_2^2 + (2\mu^{-r}+\mu^{-r}|t| \\ &- \mu^rc_2^2\Re(t)^2)\nu_3^2 + \mu^{-r}(\nu_2-\mu^rc_2\Re(t)\nu_3)^2 \\ &+ \mu^{-r}(\nu_1-\mu^{1+r}\Re(t)\nu_4)^2 + (\mu^{-r}(c_1+c_2+|t|)-\mu^{2+2r}\Re(t)^2)\nu_4^2 \\ &\geqslant 0 \end{split}$$

for every  $v = (v_1, v_2, v_3, v_4) \in \mathbb{R}^4$  and  $t \in \mathbb{C}$ .

## 3. Complete (co)positivity

The structure of the Choi matrix  $C_{\Phi_{(\mu,c_1,c_2)}} \in M_3(M_2(M_2))$  is visualized as a block matrix whose entries are  $2 \times 2$  matrices within the  $6 \times 6$  matrix.

**Proposition 3.1.** Let  $\phi_{(\mu,c_1,c_2)}$  be a map given by (2.1). The following conditions are equivalent:

- (i)  $\phi_{(\mu,c_1,c_2)}$  is completely positive,
- (ii)  $\phi_{(\mu,c_1,c_2)}$  is 2-positive and,
- (iii)  $\mu^{-r} \geqslant c_1 \text{ and } \mu^{-2r} \geqslant c_1^2 + c_2^2$ .

*Proof.* (ii) 
$$\Rightarrow$$
 (iii). Assume  $\phi_{(\mu,c_1,c_2)}$  is 2-positive. Then

is positive semidefinite, where dots replace zeros. Since  $\phi_{(\mu,c_1,c_2)}$  is 2-positive, the above matrix is positive definite. Therefore,

$$\begin{vmatrix} \mu^{-r} & -c_1 & 0 & -\mu \\ -c_1 & \mu^{-r} & -c_2 & 0 \\ 0 & c_2 & \mu^{-r} & 0 \\ -\mu & 0 & 0 & \mu^{-r} \end{vmatrix} \geqslant 0$$
(3.2)

and  $\mu^{-r}\geqslant c_1$  and  $\mu^{-2r}\geqslant c_1^2+c_2^2$ .  $(\mathfrak{iii})\Rightarrow (\mathfrak{i}).$ 

The Choi matrix of  $\phi_{(\mu,c_1,c_2)}$  is of the form,

Since (iii) is satisfied, the inequality (3.2) holds, and consequently  $C_{\varphi_{(\mu,c_1,c_2)}}$  is positive definite. Hence, complete positivity of  $\varphi_{(\mu,c_1,c_2)}$  follows.

Remark 3.2. The transposition in this case imply the Partial Positive transpose of the Choi matrix  $C_{\varphi_{(\mu,c_1,c_2)}} \in \mathbb{M}_3(\mathbb{M}_2)$ . The transposition is operated with respect to a  $2 \times 2$  matrix

as the elements of  $\mathbb{M}_3 \otimes \mathbb{M}_2$  matrix. This leads to the Partial Positive transpose Choi matrix  $C^{\Gamma}_{\Phi(\mu,c_1,c_2)} \in \mathbb{M}_3(\mathbb{M}_2)$  with the structure. By  $\Gamma$  we denote partial transpose.

**Proposition 3.3.** Let  $\phi_{(\mu,c_1,c_2)}$  be a map given by (2.1). The following conditions are equivalent:

- (i)  $\phi_{(\mu,c_1,c_2)}$  is completely copositive,
- (ii)  $\phi_{(\mu,c_1,c_2)}$  is 2-copositive and,
- (iii)  $\mu^{-r} \geqslant c_1$  and  $c_1 \mu^{-r} \geqslant c_2^2$

*Proof.*  $(ii) \Rightarrow (iii)$ .

Assume  $\phi_{(\mu,c_1,c_2)}$  is 2-copositive. Then

$$\tau_{2} \otimes \varphi_{(\mu,c_{1},c_{2})}(P) = \begin{pmatrix} \mu^{-r} & . & . & . & . & . & . & . & . & . \\ . & c_{2} & . & . & . & . & . & . & . & . & . \\ \hline . & . & \mu^{-r} & . & . & -\mu & . & . & . & . & . \\ \hline . & . & . & c_{1} & . & . & . & . & . & . & . \\ \hline . & . & . & . & c_{1} & . & . & . & . & . & . \\ \hline . & . & . & . & \mu^{-r} & . & . & . & . \\ \hline . & . & . & . & . & \mu^{-r} & . & . & . \\ \hline . & . & . & . & . & . & \mu^{-r} & . & . \\ \hline . & . & . & . & . & . & \mu^{-r} & . & . \\ \hline (3.4)$$

is positive semidefinite with the minors positive when conditions in (iii) hold.

$$(iii) \Rightarrow (i)$$
  
The choi matrix,

in  $\mathbb{M}_3(\mathbb{M}_2(\mathbb{M}_2))$ .

Since (iii) is satisfied, by calculation of the minor,  $C_{\varphi_{(\mu,c_1,c_2)}}^{\Gamma}$  is positive semidefinite when  $\mu^{-r}\geqslant c_1$  hold. Hence, complete copositivity follows.

**Example 3.4.** When r = 3,  $\mu = \frac{1}{2}$ ,  $c_1 = 1$  and  $c_2 = 2$ . Then,

with eigenvalues

 $\{10.2477, 8.4449, 8., 8., 7.5551, 5.75232, 2., 2., 2., 1., 1., 1.\}$ 

and

with eigenvalues

 $\{9., 8.03553, 8., 8., 8., 7., 4., 2., 1., 1., 0.964466, 0.\}$ 

.

# 4. Decomposability of $\phi_{(\mu,c_1,c_2)}$

A positive linear map is decomposable if it is the sum of a completely positive linear map and a completely copositive linear map. The result of Choi [3] shows that a positive linear map  $\phi$  from  $\mathbb{M}_n$  to  $\mathbb{M}_m$  is decomposable if and only if there exist  $n \times m$  matrices  $v_i$  and  $W_i$  such that,

$$\phi(X) = V_i X V_i^* + W_j X^T W_i^*$$

for every X in  $M_n$ , where T is the transpose of X.

# **Proposition 4.1.** The linear map $\phi_{(\mu,c_1,c_2)}$ is decomposable.

*Proof.* Let  $\eta, \xi \in (0,1)$  and  $\alpha_i, b_i \in \mathbb{R}^+$  for i=1,2 such that  $\eta^{-r} + \xi^{-r} = \mu^{-r}$  and  $\alpha_i + b_i = c_i$ . We show that there exist 2-positive map  $\varphi_{(\eta,\alpha_1,\alpha_2)}$  and 2-copositive map  $\varphi_{(\xi,b_1,b_2)}$  whose sum is  $\varphi_{(\mu,c_1,c_2)}$ . Let  $C_{\varphi_{(\mu,c_1,c_2)}}$  be

| β          |           |             |           |           | $-\beta_1$ |   |           |           |             |                   | $-q\mu$ |
|------------|-----------|-------------|-----------|-----------|------------|---|-----------|-----------|-------------|-------------------|---------|
|            | $\beta_2$ |             |           |           | •          |   | •         | •         |             |                   |         |
|            |           | β           |           |           | •          |   | •         | •         | $-(1-q)\mu$ |                   |         |
|            |           |             | $\beta_1$ |           | •          |   |           | •         | •           |                   |         |
|            |           | •           |           | $\beta_1$ | •          |   |           |           | •           |                   |         |
| $-\beta_1$ | •         | •           |           |           | β          |   | •         | •         | •           | $-\mathfrak{a}_2$ |         |
|            |           | •           |           |           | •          | β |           | •         | •           | •                 |         |
| •          | •         |             |           |           | •          |   | $\beta_2$ | $-b_2$    |             |                   |         |
| •          |           | •           |           |           | •          |   | $-b_2$    | $\beta_2$ | •           |                   | .       |
|            | •         | $-(1-q)\mu$ |           |           | •          |   | •         | •         | $\beta_1$ . |                   |         |
| •          |           | •           |           |           | $-a_2$     |   | •         | •         | •           | β                 |         |
| _qμ        | •         |             |           | .         | •          | . | •         | •         |             |                   | $\beta$ |
|            |           |             |           |           |            |   |           |           |             |                   |         |

(where  $\beta=\eta^{-r}+\xi^{-r}$ ,  $\beta_1=\alpha_1+b_1$ ,  $\beta_2=\alpha_2+b_2$ ) in  $\mathbb{M}_3(\mathbb{M}_2(\mathbb{M}_2)\mathbb{C})$  give be the sum of;

and

When q=1. Then, from the Choi matrices  $C_{\varphi_{(\eta,\alpha_1,\alpha_2)}}$  and  $C_{\varphi_{(\xi,b_1,b_2)}}$  the linear maps  $\varphi(\eta,\alpha_1,\alpha_2)$  is completely positive and  $\varphi(\xi,b_1,b_2)$  is completely copositive. On the other hand, when q=0. Then  $\varphi(\eta,\alpha_1,\alpha)$  is completely copositive and  $\varphi(\xi,b_1,b_2)$  is completely positive. Hence,  $\varphi(\mu,c_1,c_2)$  is decomposable.

Note that the decomposition of these maps is not unique.

#### 5. Conclusion

It is known that every positive linear map  $\phi$  from  $\mathbb{M}_2(\mathbb{C})$  to  $\mathbb{M}_m(\mathbb{C})$  is decomposable if and only if  $m \leq 3$ . The map  $\phi_{(\mu,c_1,c_2)}$  from  $\mathbb{M}_3(\mathbb{C})$  to  $\mathbb{M}_2(\mathbb{M}_2(\mathbb{C}))$  is also decomposable with  $2 \times 2$  matrices as the entry elements of the Choi matrix in  $\mathbb{M}_3(\mathbb{M}_2)(\mathbb{C})$ . However, a look at the example by Woronowicz [11] and Tang' [10] of a map from  $\mathbb{M}_2(\mathbb{C})$  to  $\mathbb{M}_4(\mathbb{C})$  when approached as a map from  $\mathbb{M}_2(\mathbb{C})$  to  $\mathbb{M}_2(\mathbb{M}_2(\mathbb{C}))$  fails to be decomposable with  $2 \times 2$  matrices as the elements of it's Choi matrix.

## **Declaration of competing interest**

There is no competing interest.

### Acknowledgment

We thank the anonymous referees for their suggestions that helped us improve the paper.

## References

- [1] Arveson W. B. Sub-algebra of C\*-algebra, Acta Math 128(1969), 141-224.
- [2] Arveson W. B. Sub-algebra II, Acta Math. 128 (1972), 271-306.
- [3] Choi M-D. Completely positive maps on complex matries. Linear Algebra and its applications. 10 (1975), 285-290.
- [4] Choi M-D. Positive semidefinite biquadratic Forms. Linear Algebra and its applications. 12 (1975)95-1005.
- [5] Majewski W. A. and Marciniak M. Decomposability of extremal positive unit all maps On  $\mathbb{M}_2(\mathbb{C})$ . Quantum Probability Banach Center Publications. 73 (2006) 347-356.
- [6] Stinespring W. F. Positive functions on C\*-algebras, Amer. Math. Sot. 6 (1955)211-216.
- [7] Stømer E. Decomposablepositive maps on C\*-algebras, Proceedings of the American Mathematical Society. 86 (1982) 402-404, .
- [8] Stømer E. Positive Linear maps of operator algebra, Acta Math. 110 (1963)233-278.
- [9] Stømer E. Positive Linear maps on operator algebra, http://www.springer.com/978-3-642-34368-1. 136(2013)
- [10] Tang' W. On positive linear maps between matrix algebras, *Linear Algebra and its Applications*. 79 (1986)33-44.
- [11] Woronowicz S. L. Positive maps of low dimensional matrix algebras. Rep. Math. Phys. 10 (1976)165-183
- [12] Yang Y., Leung D. H. and Tang W. All 2-positive linear maps from  $\mathbb{M}_3(\mathbb{C})$  to  $\mathbb{M}_3(\mathbb{C})$  are decomposable. Linear Algebra and its Applications. 503 (2016) 233-247.