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Abstract

In most literature, the decomposition of positive maps from M3 to IM, are discussed where the ma-
trix elements are complex numbers. In this paper we construct a positive maps ¢y, ¢, ¢,) from M3(C) to
M, (IM5(C)). The Choi matrices for complete positivity and complete copositivity are visualized as tensor
matrix M3 ® IM, with M5 (C) as the entry elements. The construction allows us to describe decomposability
on positive semidefinite matrices.
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1. Introduction

Positive linear maps on C*-algebras, particularly those of finite dimensions have been
very important in quantum information theory and quantum channels. Stinespring [6] ini-
tiated the concept of completely positive maps with his representation(or dilation) theo-
rem. Arveson in [1] and [2] found the application of completely positive maps in operator
theory and further developed extensively in operator algebra and mathematical physics.
Woronowicz [11], Theorem 3.1.6 showed that every positive linear map ¢ form M;(C)
to M, (C) is decomposable if and only if m < 3. In [7], [8] and [9] Theorem 1, Stgrmer
gives conditions for decomposability of positive maps; For A be a C*-algebra and linear
map ¢ is decomposable if and only if for all n € IN whenever (xi;) and (x;;) belong to
M, (A)". Choi [4] gave the first example of indecomposable map, for a 3-dimension case.

Yang, Leung and Tang [12] showed that every 2-positive linear map from M3(C) to
M;3(C) is decomposable. Though we are motivated by the question in [12] that enquire
if there exist indecomposable 2-positive maps from M3(C) to IMy(C)), we show there is a
decomposable positive map from M3 (C) to M, (M5 (C)).
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In most literature, the authors have studied case M3 to IM, where the matrix elements
are complex numbers. In this paper we construct a positive maps ¢, ,,c,) from M3(C) to
M, where the matrix elements of IM; is a 2 x 2 positive matrix IM,(C). We find conditions
on the triplet yu,cq, ¢, for which the map is positive, completely positive, 2-positive and
decomposable.

A matrix X € M, (C) is called positive semi-definite if it is hermitian and all its eigen-
values are positive. It is denoted as X > 0. The set of all positive semi-definite matri-
ces in M, (C) is denoted by M, (C)*. Let the identity map on and the transpose map
on M, (C)" be denoted by J,, and T,, respectively. A linear map ¢ is from M, (C) to
M, (C) is called positive if ¢(IM,(C))T € M, (C)*. A map ¢ from M (C) to M, (C)
is k—positive if T @ ¢ : My @ My, — My ® M., is positive. On the other hand, ¢ from
M;, (C) to M, (C) is k—copositive if the map T, ® ¢ : My ® M;; — My ® M, is positive.
The Choi result in [3] affirms that the positive map ¢ is completely positive if and only if
it’s Choi matrix is positive semidefinite.

2. Positivity

Let X € My (C) be a positive semidefinite matrix denoted by X = [x;%;], where x; =
(X1,...,%n)" € C™is a column vector and X; is the transpose conjugate(row vector) of x;.
We denote the diagonal entries x X, by otn,.

Let X € M3 be a positive semidefinite matrix with complex entries. Let 0 < p < 1,

ci,c2 > 0 and r € IN. Then we define the family of positive maps ¢y, ¢, c,) as follows:
D(erer) t M3(C)F — Mo (IM,)C) ™.
PlpL —C1X1X2 0 —UX1X3
—C1X2X1 P; —C2X2X3 0
X 0 —C2X3X2 P,;L 0 ! 2.1
—HX3X1 0 0 Pr
where
P n (o + croopu” 4 coogp”)
P} = p T (xp+cragpn’ +coxqp’)
PgL = u (o + oo + x3)
Pl = w T (ag+ciaap’ +coxop’)

The matrix ¢, ¢, .c,)(X) is visualized as a 2 x 2 block matrix in M, (IM>(C)).
The linear map ¢ is uniquely determined by the polynomial function;

F(z,x) = v (xi¥; Wt

as a biquadratic function in x := (x1,x2,x3) and v := (v1,v;,v3,v4). The map ¢ is positive
if and only if the biquadratic form F(z, x) is a sum of squares (positive semi-definite).

We characterize of the positivity of the map ¢ for v = (vq,Vv»,v3,v4) € R*and t € C.
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Lemma 2.1. Let 0 < u < 1 and ¢y, ¢y > 0. Then the function

Fvi,vo,v3,va,t) = 1 (1+cqn” +coltlu i+ " (14 cpltln” + con™ 3+ p " (2 + [t])v3
FuT (1t +cu” + e ur)vi —2¢1vva — 2001 (t)vavs — 2uR(t) vy vy

is positive semidefinite for every vi,v2,v3,v4 € R and t € C if and only if the following two
conditions are satisfied:

u "> cy. (2.2)
nw > co. (2.3)
Proof. If vi = 0. Then,
F(O,VZ,V3,V4,t)

W (L cqltln” + con™ Vo + T (24 [tV + 0T (It + ern” + con” v — 2c2R(t)vava
caltl+ eV + 207V 4+ (It 4 e T+ copIVE (0 TVE — 2vpv3 e R () 4 T TIEVE)

(
(caltl + c2)v3 + 1 ([t + crp” + cop" i + 1T (v2 — 1o (t)vs)?
+ U T = e 3R M.

F(0,vy,v3, vy, t) is positive when the coefficient of v% satisfy the inequality,
W2 (24 [t]) — 3R2 (1) > 0. (2.4

Letting t = x 4 iy. We have that,
BT - wT R = 207 (0T (P 4 lyPP) = xPe3)
207y P P (e = 63)

is positive whenever =" > ¢, hold.

If v = 0. Then,

F(v1,0,v3,v4,t)
= w1+ + otV 4+ T2+ [H)VE 4 T (1t e+ o)V — 2R (t) vy vy
B (e + et Vi 4 p T2 4 [HVE 4 T (e 4 e V] + (0T — 2vqvg R () + TtV
= W (ern” A eolth Vi + T2+ [V 4 T (e i+ con vy
[T
0.

T vy — I HTR(Evg)? + 0T (I — k2T R(0)2V]

Vo

If v3 = 0. Then,
F(VIIVZ/ 0,V4,t)

= w (L4 e + ool v+ u T (1 cq e + cop" WV + (It + ot + con V]

—  2c1vivp — Zu%(t)vl\q

= colth} + 0 T (1 + o V3 + (1 + c)vi + (B TV —2vivapR(t) + w T[tv) + ¢ (v — 2v1vp + [thv3)

= ot + 1 "1+ con" V3 + (e1 + c)vg + 1 T (v — w TR (t)vy)?

A (1t — EPTRODVE + eq (v —v2)? +ep ([P —1)v3
F(v1,v2,0,vy,t) is positive whenever u~" —c¢q; > 0 hold. That is, the coefficients of v% is

such that,

W dce+e(ltl=1) = (W "—c1)+ca+cltl > 0. (2.5)
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If vy = 0. Then,
F(Vl,Vz,V3, 0/ t)

"1+ cqp” + cotln" i 4 T (1 + cq [t + cop" V3 + T (24 [tV — 201 viva — 200 (t)vavs

1+ cz\tlur)v% + czv% + 2u*rv% +c (V% —2v1vy + Itlv%) + (ufrv% —2coR(t)vovs + ufrlt\v%)

o

o

w1+ cz\tlur)v% + czv% + 2u7rv% +c1(vi =va)2 +cq (It — 1)\)%
o

0

T

T(va — 1M (t)v3)? + (Tt — R (t)2)v3

Vo4

whenever the inequalities (2.4) and (2.5) hold.
Now let vi # 0,1 = 1,2,3,4 and assume that there exist vi,v,,v3,v4 € R and t € C such
that vi # 0 and F(vy,vy,v3, v, t) < 0. Since 0 < u < 1 and ¢q,¢y > 0. Then,
F(VIIVZ/ V3,V4, t)

= W (Lo colti i T (L4 ealtln” 4 cau" V3 T2+ DV 4 T (] + et + con)vi
—2c1v1vo — 2¢0R(t)vovy — 2pR(t) v vy
WV 1TV 4 20 TV (o1 eo) i V] o (v —va) R er (1R — 1)vE + T (va — e (t)vs)?
T = W ERP)VE + T v — pTTR(Ova)? + (0TI — WETTR(0%)v)
< 0

is a contradiction when the inequalities (2.4) and (2.5) hold . Thus F(vy,vz,v3,v4,t) > 0
for every vi,vo,v3,vs € Rand t € C. O

Proposition 2.2. The linear map ¢
satisfied.

Wy cy) 18 positive provided Lemma 2.1 is satisfied. are

Proof. We need to show that,

q
o) S (q S ‘E) GMI
t
for every q,s,t € C.
Thai is. -
Vi P" —cigs| 0 —pgt Vi
v —c1sq Py | —cst 0 V2
> .
V3 0 —cots | PY 0 vz | 7 0 (26
V4 —utq 0 0 Py V4
where,
P = p (gl + calsPrT + coltln”)
P = T (IsP + caltle” + calqPut)
PY = w T (lgP +IsP + 1)
P = (It + crlqlPut + calsPut)

for every vi,v2,v3,v4 € Rand q,s,t € C.
Taking q = s = 0.

F(v1,v2,V3,va, t) = et TtV 4 cq[thv3 4+ w TtV 4+ [t > 0.



C. A. Winda et al / Decomposable map 20

If g =0. Since 0 < p < 1, by inequality (2.4),

F(VI/VZI V3,Vy4, t)
= (1 +Ccalthvi + (14 calthvd + T (1 + [t)v3 + (0TIt + c2)vi — 2coR (t)vavs
> 0.

Ifs=0,

F(V1/V2/ V3,Vy4, t)
= (14 calthvi + (crltl + o)V 4+ (14 [tV + (It + e " )vi — 209 (t)vivy
= Colthv} + (crltl + co)VE + T (14 [thv3 + eqvi + T (v — n TRt vy)?
+ (TR = e TRV
> 0.

If g and s are not equal to zero. Assume that ¢ = s = 1. Then, by Lemma 2.1

1
' 1] (111%t) ]z=0
t
since the polynomial,
F(vi, v, v3,ve,t) = W " (1+cip’ +coltln" Ve + (14 cqltle” + cop" Vi + " (2 + [t)v

([t e+ el )vE — 2¢1viva — 2o (t)vavs — 2uR(t)vivy
= Wi+ p Vit (vi—v) (P —1va+ 2 T+ T
WTER(O2VE + 1 (v2 — TR (H)vs)’
+ o T (v — TR+ (T (e e+ ) — pETETR(H))vE
> 0

for every v = (v1,Vv2,v3,v4) € R*and t € C. O

3. Complete (co)positivity

The structure of the Choi matrix Cd)(wl o € M3 (M, (IM,)) is visualized as a block
matrix whose entries are 2 x 2 matrices within the 6 x 6 matrix.

Proposition 3.1. Let ¢
equivalent:

) be a map given by (2.1). The following conditions are

W,€1,€2

(1) & (ucyc,) is completely positive,
(i1) & (ycyc,) is 2-positive and,

Gii) pw "> ciand p T > C% + c%.

2
3
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Proof. (ii) = (iii).

Assume ¢, ¢, c,) is 2-positive. Then
JZ ® d)(u,C1,02) (P) =
[T —C1| . —u
Co .
H—T‘
C1
S € Mz (M2(M3)) 3.1
1 .

—C1 . . . . W —c2

. . . . . —Co | uTT
- . . . . A T

is positive semidefinite, where dots replace zeros. Since ¢
matrix is positive definite. Therefore,

wey,c,) i 2-positive, the above

T

pw' o—ca 0 —p

—c1 W —cp 0
0 ¢ w0

—u 0 0 uT

>0 (3.2)

and 1" > ¢y and p 2" > ¢ + ¢
(i) = (1).

The Choi matrix of ¢ ) is of the form,

W,C1,C2
cb(u,cl,ch =
ur —C1 . . .. . —u
Co .
H—r
C1
C1
—Cc1 . . . . T . . . .| —c
s € M3(Mz(Mp))
C2
C2
C1
. . . . . —C . . N T
- . . . . . . . . .oouT

3.3)

Since (iii) is satisfied, the inequality (3.2) holds, and consequently Copepey) is positive

definite. Hence, complete positivity of ¢, , c,) follows. O

Remark 3.2. The transposition in this case imply the Partial Positive transpose of the Choi

matrix Cg (hepey) € M3(IM;). The transposition is operated with respect to a 2 x 2 matrix
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as the elements of M3 ® IM, matrix. This leads to the Partial Positive transpose Choi matrix

CE)( € M3(IM;) with the structure. By I' we denote partial transpose.
weq,eo

Proposition 3.3. Let ¢
equivalent:

wey,c,) be a map given by (2.1). The following conditions are

(1) &(ucy,c,) is completely copositive,

(i) ¢ (,cy,c,) s 2-copositive and,

(iii) w2 candcip T > c%

Proof. (i) = (iii).
Assume ¢, ¢, c,) is 2-copositive. Then

wor —C1
Co .
T —u
C1
T2 @ Peq,en)(P) = € M;(M;(M3))
. C1 . . —C2
—C1 —u et
u—r
—C2 . . ur
3.4)
is positive semidefinite with the minors positive when conditions in (iii) hold.
(i) = (1)
The choi matrix,
ot —C1
Co .
ot —u
C1
C1 .
r - R (3.5)
‘b(u,cl,cz) ufr .
C2 || —C2
. —C2 C2
—HK C1. .
oo
M—T

in M3(M3(My)).

Since (iii) is satisfied, by calculation of the minor, CE,(

uw " > cq hold. Hence, complete copositivity follows.

w,.c1,€2

) is positive semidefinite when

O]
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1

Example 3.4. Whenr = 3,1 = 5,¢; =1 and ¢y = 2. Then,

8 0/0 00 —1|0 ofj0o 0|0 -3

0 2{0 0|0 0|0 0[[0 0|0 O

0 0[8 offo o0 of[0o 00 O

0 0/0 1]l0 0|0 0[O0 0|0 O

0 0[0o offt ofo of[o 0[]0 O
| -1 0|0 0fjl0 8|0 0][0 0|2 0O
P12 0 0[0 offo 0 [8 0[]0 0|0 O
0 0/0 0|0 0|0 2][0 0|0 O

0 0[o offo ofo of[2 0[]0 O

0 0/0 0|0 0|0 0[O0 1|0 O

0 0[0 offo —2[0 0f[0 0| 8 ©
—1 0|0 0|/0 0|0 0[O0 0|0 8

with eigenvalues
{10.2477,8.4449,8.,8.,7.5551,5.75232,2.,2.,2.,1.,1.,1.}

and

|
—_

1=

QIO OO

N OO O OO O
oo O OO O

|
N

QOO OO OO | O O

|
N

N[ =

5
|
—_
O OO O OO Ol OolN O
O OO OO 0O Ol Ol O
O VO OO OO Q| OO O
OO OO OO Ol O O

O Ol Ol OO O ON| o O

O OO OO OO || oo O

O OO O OO O~k Ol O

O OO OO Ol Ol OO

O OO O|llo O
o O

S OO

S OO

with eigenvalues
{9.,8.03553,8.,8.,8.,7.,4.,2.,1.,1.,0.964466, 0.}

4. Decomposability of &, ¢, c,)

A positive linear map is decomposable if it is the sum of a completely positive linear
map and a completely copositive linear map. The result of Choi [3] shows that a positive
linear map ¢ from M, to IM,, is decomposable if and only if there exist n x m matrices
vi and W; such that,

$(X) = ViXV{ + W XTws

for every X in IM,,, where T is the transpose of X.
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Proposition 4.1. The linear map ¢y, ,,c,) is decomposable.

Proof. Let 1,& € (0,1) and ai,b; € RT fori = 1,2 such that n™ "+ & " = pw " and

ai +b; = ci. We show that there exist 2-positive map ¢

n,ap,az

) and 2-copositive map

P (&,b,,by) Whose sum is ¢y ¢, c,)- Let Cd>(u,c1,c2) be
. —B1 —qu
B2 : .
§ : —(1=q)u
B1] .
: B .
—B1 B |- —ap
B . | .
B2 | —b2
. —b2 | B2 .
—(1—q)p P1- :
. —ap B .
—qu B

(where p =n""+ &7, B1 = a; + by, B2 = az + by) in M3(M,(IM;)C) give be the sum of;

—r

4.1)

n —1 —qu
as . .
nto.
a
. a; . .
_ — T"Iir . —ay
Pmaray) . nro.
. an
ar .
a i
. —ap nr .
—qu . nr
and
T —bq
by . . .
} & . —(1—q)p
bq . .
. by .
—bq ET .
Cd’(“wbl'bz) - . ET . .
by || —b2
. —by || by .
—(1—q)u . ) b;. )
. T .
E,*T
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When q = 1. Then, from the Choi matrices Cy, , ., and Cg, ., the linear maps

®(n, a1, ap) is completely positive and ¢ (€, by, by) is completely copositive. On the other
hand, when q = 0. Then ¢(n, a1, a)) is completely copositive and ¢ (&, by, by) is completely
positive. Hence, ¢ (1, ¢1, ¢2) is decomposable. O

Note that the decomposition of these maps is not unique.

5. Conclusion

It is known that every positive linear map ¢ from IM;(C) to IM,, (C) is decomposable
if and only if m < 3. The map ¢, ¢, c,) from M3(C) to M>(IM>(C)) is also decomposable
with 2 x 2 matrices as the entry elements of the Choi matrix in M3(M;)(C). However, a
look at the example by Woronowicz [11] and Tang’ [10] of a map from MM, (C) to IM4(C)
when approached as a map from M;(C) to M, (IM,(C)) fails to be decomposable with
2 x 2 matrices as the elements of it’s Choi matrix.
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