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Abstract
In this paper, we investigate the existence and uniqueness of positive solutions for a class of Caputo-

type fractional differential equations with nonlocal integral boundary conditions. Our analysis based on
constructing the upper and lower control functions of the nonlinear terms without having any monotone
conditions except the continuity, Green function, and Schauder’s (Banach’s) fixed point technique on a cone.
Finally, some examples are given to substantiate our main results.
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1. Introduction

Fractional differential equations (FDEs) can be broadly applied to different teaches like
physics, chemistry, mechanics, and engineering, see [1, 2]. Consequently, lately, FDEs have
been of extraordinary interest and there have been numerous outcomes on the existence
and uniqueness of solutions (positive solutions) of FDE, see [3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
Particularly, Zhang [14] employed the upper and lower solution method along with the
fixed point theorem (FPT) of a cone to investigate the existence and uniqueness of a
positive solution for {

Dθ
0+ω(κ) = f(κ,ω(κ)), 0 < κ < 1,

ω(0) = 0, 0 < θ ⩽ 1. (1.1)
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Yao [15] studied the existence of a positive solution to (1.1) controlled by the power
function using the cone Krasnosel’skii’s FPT.

In [16], Wang et al., obtained the existence and uniqueness of positive solutions of
the following integral BVP by using the upper and lower solution method and fixed point
theorem on cone.

Dθ
0+ω(κ) + f(κ,ω(κ)) = 0, 0 < κ < 1,

ω(0) = 0, ω(1) =
∫ 1

0
ω(s)ds, 1 < θ ⩽ 2.

Abdo et al. [19] proved the existence and uniqueness of positive solutions of the
following problem

Dθ
0+ω(κ) = f(κ,ω(κ)), 0 ⩽ κ ⩽ 1,

ω(0) = λ

∫ 1

0
ω(s)ds+ d, 0 < θ ⩽ 1.

by using the upper and lower solution method and FPT on cone. More recently, Wahash et
al. [17, 18] discussed the existence of positive solutions to the BVPs for generalized FDEs
via the upper and lower solutions method along with a cone Schauder’s FPT.

In this article, we investigate the existence and uniqueness of positive solution of inte-
gral BVP for a nonlinear Caputo-type FDE:

CDθ
0+ω(κ) + f(κ,ω(κ)) = 0, 0 ⩽ κ ⩽ 1,
ω(0) = ω′(0) + g(ω),
ω(1) =

∫1
0 ω(s)ds,

(1.2)

where 1 < θ ⩽ 2, CDθ
0+ is the Caputo fractional derivative of order θ, f : [0, 1]×R+ →

R+ and g : C[0, 1] → R+.
However, in the previous works, the nonlinear term has to satisfy the monotone con-

dition. Indeed, the FDEs with non-monotone function can respond better to weaken the
monotone condition. In this regard, we mainly investigate the FDE (1.2) without any
monotone requirement on a nonlinear term by structuring the upper and lower control
function and utilizing the upper and lower solutions method along with Schauder’s FPT.

The rest of the article is organized as follows. In Section 2, we give some definitions
and facts preliminary which are prerequisites in the sequel. Section 3 is devoted to proof-
ing our main results and some explicatory examples.

2. Preliminary results

The given section appoints some important definitions and lemmas related to the frac-
tional calculus and Green’s function.

Definition 2.1. [1]The RL fractional integral of order θ > 0 of a function f : (0,∞) → R

is defined by

Iθ0+f(κ) =
1

Γ(θ)

∫κ
0

f(s)

(κ − s)1−θ
ds.

provided that the right side is point wise defined on (0,∞).
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Definition 2.2. [1] The RL fractional derivative of order θ > 0 of a function f : (0,∞) → R

is given by

Dθ
0+f(κ) =

1
Γ(n− θ)

(
d

dκ

)n ∫κ
0

f(s)

(κ − s)1−n+θ
ds,

where n− 1 < θ ⩽ n, n = [θ] + 1.

Definition 2.3. [1] The Caputo fractional derivative of order θ (n− 1 < θ ⩽ n) for an at
least n-times differentiable function f : (0,∞) → R is given by

cDθ
0+f(κ) =

1
Γ(n− θ)

∫κ
0

f(n)(s)

(κ − s)1−n+θ
ds,

where f(n)(s) = dn

dκn f(s). In particular, if 1 < θ ⩽ 2, we have

CDθ
0+f(κ) =

1
Γ(2 − θ)

∫κ
0

f(2)(s)

(κ − s)θ−1ds,

Lemma 2.4. Let θ > 0 and ω ∈ C(0, 1)∩ L(0, 1). Then the FDE

CDθ
0+ω(κ) = 0

has a unique solution

ω(κ) = d0 + d1κ + d2κ2 + ... + dn−1κn−1,

where di ∈ R(i = 0, 1, ...,n− 1) and n = [θ] + 1.

Lemma 2.5. Let θ > 0 and ω,cDθ
0+ω ∈ C(0, 1)∩ L(0, 1). Then

Iθ0+
CDθ

0+ω(κ) = ω(κ) + d0 + d1κ + d2κ2 + ... + dn−1κn−1,

where di ∈ R(i = 0, 1, ...,n− 1) and n = [θ] + 1.

Here, we will only refer to Banach’s FPT[20] and Schauder’s FPT[20].

3. Main results

Let C ([0, 1], R) denote the Banach space of all continuous functions from [0, 1] into R

endowed with the norm defined by

∥ω∥ = sup{|ω(κ)| ; κ ∈ [0, 1]}

Define the cone

K = {ω ∈ C[0, 1] : ω(κ) ⩾ 0, κ ∈ [0, 1]}.

The positive solution we mean in this work is that ω(κ) ⩾ 0, 0 < κ ⩽ 1, ω ∈ C[0, 1].



J. Patil, A. Chaudhari, M.S. Abdo, B. Hardan, A. Bachhav / Positive solution for... 19

Lemma 3.1. Let 1 < θ ⩽ 2 and h(κ) ∈ C[0, 1]. Then the BVP
CDθ

0+ω(κ) + h(κ) = 0, 0 ⩽ κ ⩽ 1,
ω(0) = ω′(0) + g(ω),
ω(1) =

∫1
0 ω(s)ds,

(3.1)

has a unique solution

ω(κ) = g(ω) +

∫ 1

0
G(κ, s)h(s)ds. (3.2)

where

G(κ, s) =


2(κ+1)(θ+s−1)(1−s)θ−1−θ(κ−s)θ−1

Γ(θ+1) , 0 ⩽ s ⩽ κ ⩽ 1
2(κ+1)s(1−s)θ−1

Γ(θ+1) , 0 ⩽ κ ⩽ s ⩽ 1
(3.3)

Here G(κ, s) is called Green function of BVP (3.1).

Proof. Applying Iθ0+ on both sides of (3.1), then using Lemma 2.4, we can reduce the
equation − CDθ

0+ω(κ) = h(κ), into its equivalent integral equation as

ω(κ) = ω(0) +ω′(0)κ −

∫κ
0

(κ − s)θ−1

Γ(θ)
h(s)ds. (3.4)

Hence

ω(1) = ω(0) +ω′(0) −
∫ 1

0

(1 − s)θ−1

Γ(θ)
h(s)ds. (3.5)

By the boundary condition ω(1) =
∫1

0 ω(s)ds and (3.4), we have

ω(1) = ω(0) +
ω′(0)

2
−

∫ 1

0

∫κ
0

(κ − s)θ−1

Γ(θ)
h(s)dsdκ (3.6)

Comparing (3.5) and (3.6) with the help of Fubini’s theorem, we get

ω′(0) = 2
∫ 1

0

(θ+ s− 1)(1 − s)θ−1

Γ(θ+ 1)
h(s)ds (3.7)

In view of nonlocal condition ω(0) = ω′(0) + g(ω), we obtain

ω(0) = g(ω) + 2
∫ 1

0

(θ+ s− 1)(1 − s)θ−1

Γ(θ+ 1)
h(s)ds (3.8)

From (3.7), (3.8) and (3.4), we get

ω(κ) = g(ω) + 2(κ + 1)
∫ 1

0

(θ+ s− 1)(1 − s)θ−1

Γ(θ+ 1)
h(s)ds−

∫κ
0

(κ − s)θ−1

Γ(θ)
h(s)ds.
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This is

ω(κ) = g(ω) +

∫ 1

0

2(κ + 1)(θ+ s− 1)(1 − s)θ−1

Γ(θ+ 1)
h(s)ds−

∫κ
0

(κ − s)θ−1

Γ(θ)
h(s)ds

= g(ω) +

∫κ
0

2(κ + 1)(θ+ s− 1)(1 − s)θ−1

Γ(θ+ 1)
h(s)ds

+

∫ 1

κ

2(κ + 1)(θ+ s− 1)(1 − s)θ−1

Γ(θ+ 1)
h(s)ds−

∫κ
0

(κ − s)θ−1

Γ(θ)
h(s)ds

= g(ω) +

∫κ
0

2(κ + 1)(θ+ s− 1)(1 − s)θ−1 − θ(κ − s)θ−1

Γ(θ+ 1)
h(s)ds

+

∫ 1

κ

2(κ + 1)(θ+ s− 1)(1 − s)θ−1

Γ(θ+ 1)
h(s)ds

= g(ω) +

∫ 1

0
G(κ, s)h(s)ds,

where G(κ, s) is defined by (3.3).

Lemma 3.2. For all θ ∈ (1, 2]. The Green function given by (3.3) satisfies the following prop-
erties:

(i) G(κ, s) is continuous on [0, 1]× [0, 1].

(ii) G(κ, s) ⩾ 0, κ, s ∈ (0, 1).

(iii) G(1, s) > 0, for all s ∈ (0, 1).

(iv) G(κ, s) ⩽ G(s, s) for all κ, s ∈ [0, 1].

Proof. Let us assume

G1(κ, s) =
2(κ + 1)(θ+ s− 1)(1 − s)θ−1 − θ(κ − s)θ−1

Γ(θ+ 1)
, 0 ⩽ s ⩽ κ ⩽ 1,

G2(κ, s) =
2(κ + 1)(θ+ s− 1)(1 − s)θ−1

Γ(θ+ 1)
, 0 ⩽ κ ⩽ s ⩽ 1.

One can check easily that G1(κ, s) and G2(κ, s) are continuous on [0, 1]× [0, 1], thus (i) is
true. Now, we prove that (ii) holds. Obviously, G2(κ, s) is positive for all 0 ⩽ κ ⩽ s ⩽ 1.
To show that G1(κ, s) is positive. It is clear that

(1 − s)θ−1 ⩾ (κ − s)θ−1, 0 < s ⩽ κ < 1,

and
(θ+ s− 1) > θ, n− 1 < θ ⩽ n, 0 < s < 1.

Hence
2(κ + 1)(θ+ s− 1)(1 − s)θ−1 ⩾ θ(κ − s)θ−1.
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Next, we show that (iii) is satisfied. It is clear that G2(1, s) > 0 for 0 < s < 1, and by
the same argument in (ii) one can show that G1(1, s) > 0 for 0 < s < 1.

Finally, the condition (iv) holds. Indeed, G2(κ, s) is increasing with respect to κ on
[0, s] and we prove that G1(κ, s) is decreasing in [s, 1]. Define

g1(κ, s) = 2κ1−θ(θ+ s− 1)(1 − s)θ−1

+2κ−θ(θ+ s− 1)(1 − s)θ−1 − θ(1 −
s

κ
)θ−1.

Then G1(κ, s) = κθ−1

Γ(θ+1)g1(κ, s). Since

∂g1(κ, s)
∂κ

= 2(1 − θ)κ−θ(θ+ s− 1)(1 − s)θ−1

−2θκ−θ−1(θ+ s− 1)(1 − s)θ−1 − θ(θ− 1)
( s

κ2

)
(1 −

s

κ
)θ−2

< 0,

g1(κ, s) is decreasing on [s, 1] with respect to κ. Therefore, G(κ, s) is decreasing with
respect to κ for κ ⩾ s and G(κ, s) is increasing with respect to κ for κ ⩽ s. So, G(κ, s) ⩽
G(s, s) for s,κ ∈ [0, 1].

Definition 3.3. Let f : [0, 1]× R+ → R+ is continuous. Take a,b ∈ R+, and b > a. For
any ω ∈ [a,b], we define the upper-control function f(κ,ω) = sup

a⩽η⩽ω

f(κ,η), and lower-

control function f(κ,ω) = inf
ω⩽η⩽b

f(κ,η). Clearly, f(κ,ω) and f(κ,ω) are monotonous

non-decreasing on ω and
f(κ,ω) ⩽ f(κ,ω) ⩽ f(κ,ω).

Remark 3.4. The previous definition is vaild on the function g(ω), that is

g(ω) ⩽ g(ω) ⩽ g(ω),

where g(ω) = sup
a⩽η⩽ω

g(η) and g(ω) = inf
ω⩽η⩽b

g(η).

Definition 3.5. Let ω(κ),ω(κ) ∈ K and a ⩽ ω(κ) ⩽ ω(κ) ⩽ b satisfy

− CDθ
0+ ω(κ) ⩾ f(κ,ω(κ)), 0 ⩽ κ ⩽ 1,
ω(0) ⩾ ω′(0) + g(ω),
ω(1) ⩾

∫1
0 ω(κ)dκ,

(3.9)

or

ω(κ) ⩾ g(ω) + 2(κ + 1)
∫ 1

0

(θ+ s− 1)(1 − s)θ−1

Γ(θ+ 1)
f(κ,ω(κ))ds

−

∫κ
0

(κ − s)θ−1

Γ(θ)
f(κ,ω(κ))ds, κ ∈ [0, 1]

and
− CDθ

0+ ω(κ) ⩽ f(κ,ω(κ)), 0 ⩽ κ ⩽ 1,
ω(0) ⩽ ω′(0) + g(ω),
ω(1) ⩽

∫1
0 ω(κ)dκ,
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or

ω(κ) ⩾ g(ω) + 2(κ + 1)
∫ 1

0

(θ+ s− 1)(1 − s)θ−1

Γ(θ+ 1)
f(κ,ω(κ))ds

−

∫κ
0

(κ − s)θ−1

Γ(θ)
f(κ,ω(κ))ds, κ ∈ [0, 1].

Thus, ω(κ) and ω(κ) are the upper and lower solutions, respectively for problem
(1.2).

Now, we give the following hypotheses:

(H1) There exist two constants Lf,Lg > 0 such that

|f(κ,ω1) − f(κ,ω2)| ⩽ Lf |ω1 −ω2| , ∀κ ∈ [0, 1], ω1,ω2 ∈ R+

|g(ω1) − g(ω2)| ⩽ Lg |ω1 −ω2| , ∀ ω1,ω2 ∈ C([0, 1], R+).

(H2) There exist nonnegative function ρ ∈ L1[0, 1] and positive constants c1 ∈ R+, c2, c3 >

0 such that
|f(κ,ω)| ⩽ ρ(κ) + c1 |ω| , .

|g(ω)| ⩽ c2 + c3 |ω| , ω ∈ C([0, 1], R+).

Theorem 3.6. Assume that f : [0, 1] × R+ → R+ is continuous. Let (H2) holds, and
ω(κ),ω(κ) are upper and lower solutions of problem (1.2). If(

5θ+ 1
Γ(θ+ 2)

c1 + c3

)
< 1. (3.10)

Then the Caputo-FDFs (1.2) has a solution ω ∈ C[0, 1]. Moreover,

ω(κ) ⩽ ω(κ) ⩽ ω(κ), κ ∈ [0, 1].

Proof. Define Q : K → K by

(Qω) (κ) = g(ω) +

∫ 1

0
G(κ, s)f(s,ω(s))ds, κ ∈ [0, 1]. (3.11)

By Lemma 3.1, fixed points of Q are solutions of the problem (1.2). From continuity
of f,g and G(κ, s), the operator Q is continuous. Define a closed ball

Br = {ω ∈ K : ∥ω∥ ⩽ r, κ ∈ [0, 1]},

with

r ⩾
c2 +

5θ+1
Γ(θ+2) ∥ρ∥L1

1 −
(

5θ+1
Γ(θ+2)c1 + c3

) .
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Then we can show that Q : K → K. Indeed, for any ω ∈ Br and by (H2). Then

|(Qω) (κ)| ⩽ |g(ω)|+

∫ 1

0
|G(κ, s)| |f(s,ω(s))|ds

⩽ c2 + c3 |ω(s)|+

∫ 1

0
|G(κ, s)| [ρ(s) + c1 |ω(s)|]ds

⩽ c2 + c3r+ (∥ρ∥L1 + c1r)

∫ 1

0
|G(κ, s)|ds.

Also, we have ∫ 1

0
|G(κ, s)|ds ⩽

5θ+ 1
Γ(θ+ 2)

. (3.12)

Hence

∥(Qω)∥ ⩽ c2 +

(
5θ+ 1
Γ(θ+ 2)

c1 + c3

)
r+

5θ+ 1
Γ(θ+ 2)

∥ρ∥L1 ⩽ r.

This show that Q maps K into K . Next, we show that Q is completely continuous.
First, the operator Q : K → K is continuous in light of the assumptions of nonnega-

tiveness and continuity of f(κ,ω), g(ω) and G(κ, s). Next, Q : Br → Br is uniformly
bounded, due to Q maps K into K.

Finally, we prove that Q is equicontinuous. Set M := max
(κ,ω)∈[0,1]×[0,r]

f(κ,ω(κ)) + 1.

For each ω ∈ Br. Then for κ1,κ2 ∈ [0, 1] with κ1 < κ2, we have

|(Qω)(κ2) − (Qω)(κ1)| =

∣∣∣∣∣
∫ 1

0
G(κ2, s)f(s,ω(s))ds−

∫ 1

0
G(κ1, s)f(s,ω(s))ds

∣∣∣∣∣
⩽ 2(κ2 −κ1)

∫ 1

0

(θ+ s− 1)(1 − s)θ−1

Γ(θ+ 1)
|f(s,ω(s))|ds

+
1

Γ(θ)

∫κ1

0

∣∣(κ1 − s)θ−1 − (κ2 − s)θ−1∣∣ |f(s,ω(s))|ds

+
1

Γ(θ)

∫κ2

κ1

(κ2 − s)θ−1 |f(s,ω(s))|ds

⩽
2Mθ

Γ(θ+ 2)
(κ2 −κ1) +

M

Γ(θ+ 1)
(
κθ

1 −κθ
2 + 2(κ2 −κ1)

θ
)

⩽
2Mθ

Γ(θ+ 2)
(κ2 −κ1) +

2M
Γ(θ+ 1)

(κ2 −κ1)
θ. (3.13)

The right-hand side of the inequality (3.13) tends to zero as As κ2 −κ1 → 0, which means
that (QBr) is equicontinuous. So Q is relatively compact on Br, as consequence of the
Arzela-Ascoli theorem, we conclude that Q is completely continuous.

To apply Schauder’s fixed point theorem, we need only to prove Q : Λ → Λ, where

Λ = {v(κ) : v(κ) ∈ K, ω(κ) ⩽ v(κ) ⩽ ω(κ), κ ∈ [0, 1]},

endowed with norm ∥v(κ)∥ = max
κ∈[0,1]

|v(κ)| ⩽ b. Hence Λ is a convex, closed and bounded

subset of the Banach space C([0, 1], R+). For any v(κ) ∈ Λ, then ω(κ) ⩽ v(κ) ⩽ ω(κ) it
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follows from the definitions 3.3, 3.5 that

(Qv) (κ) = g(v) +

∫ 1

0
G(κ, s)f(s, v(s))ds

⩽ g(v) +

∫ 1

0
G(κ, s)f(s, v(s))ds

⩽ g(ω) +

∫ 1

0
G(κ, s)f(s,ω(s))ds

⩽ ω(κ),

and

Qv(κ) = g(v) +

∫ 1

0
G(κ, s)f(s, v(s))ds

⩾ g(v) +

∫ 1

0
G(κ, s)f(s, v(s))ds

⩾ g(ω) +

∫ 1

0
G(κ, s)f(s,ω(s))ds

⩾ ω(κ)

Therefore, ω(κ) ⩽ Qv(κ) ⩽ ω(κ), 0 ⩽ κ ⩽ 1 which implies that Qv(κ) ∈ Λ for
all κ ∈ [0, 1]. This proves that Q : Λ → Λ. As consequence of Schauder’s FPT [20], the
operator Q has at least one fixed point ω(κ) ∈ Λ, 0 ⩽ κ ⩽ 1. Therefore, the problem
(1.2) has at least one solution ω(κ) ∈ C[0, 1] and ω(κ) ⩽ ω(κ) ⩽ ω(κ), κ ∈ [0, 1].

Corollary 3.7. Assume that f : [0, 1]×R+ → R+ is continuous, and there exist M1,M2,N1,N2 >

0 such that
M1 ⩽ f(κ,σ1) ⩽ M2, (κ,σ1) ∈ [0, 1]× R+, (3.14)

N1 ⩽ g(σ2) ⩽ N2, σ2 ∈ C([0, 1], R+). (3.15)

Then there exists at least a solution ω(κ) of the Caputo-FDFs (1.2). Moreover, for κ ∈ [0, 1],

ω(κ) ⩽ N2 + 2(κ + 1)
[(

θ− 1
θΓ(θ+ 1)

+
1

θΓ(θ+ 2)

)
−

κθ

Γ(θ+ 1)

]
M2, (3.16)

and

ω(κ) ⩾ N1 + 2(κ + 1)
[(

θ− 1
θΓ(θ+ 1)

+
1

θΓ(θ+ 2)

)
−

κθ

Γ(θ+ 1)

]
M1. (3.17)

Proof. From the Definition 3.3 and the assumptions (3.14), (3.15) we have

M1 ⩽ f(κ,σ1) ⩽ f(κ,σ1) ⩽ M2, (κ,σ1) ∈ [0, 1]× [a,b] (3.18)

N1 ⩽ g(σ2) ⩽ g(σ2) ⩽ N2.2, σ2 ∈ C([0, 1], [a,b]) (3.19)

Now, we consider the following Caputo problem

− CDθ
0+ ω(κ) = M2, 0 ⩽ κ ⩽ 1,

ω(0) = ω′(0) +N2,
ω(1) =

∫1
0 ω(κ)dκ,

(3.20)
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Then, the Caputo problem (3.20) has a positive solution

ω(κ) = N2 + 2(κ + 1)
∫ 1

0

(θ+ s− 1)(1 − s)θ−1

Γ(θ+ 1)
M2ds

−

∫κ
0

(κ − s)θ−1

Γ(θ)
M2ds

= N2 + 2(κ + 1)
[(

θ− 1
θΓ(θ+ 1)

+
1

θΓ(θ+ 2)

)
−

κθ

Γ(θ+ 1)

]
M2, κ ∈ [0, 1]

By (3.18) and (3.19), we conclude that

ω(κ) = N2 +

∫ 1

0
G(κ, s)M2ds ⩾ g(ω) +

∫ 1

0
G(κ, s)f(κ,ω(κ))ds.

Thus, the function ω(κ) is the upper solution of the Caputo problem (1.2).
In the above same way, if the Caputo problem of the type

− CDθ
0+ ω(κ) = M1, 0 ⩽ κ ⩽ 1,

ω(0) = ω′(0) +N1,
ω(1) =

∫1
0 ω(κ)dκ,

(3.21)

Obviously, the Caputo problem (3.21) has also a positive solution

ω(κ) = N1 + 2(κ + 1)
∫ 1

0

(θ+ s− 1)(1 − s)θ−1

Γ(θ+ 1)
M1ds

−

∫κ
0

(κ − s)θ−1

Γ(θ)
M1ds

= N1 + 2(κ + 1)
[(

θ− 1
θΓ(θ+ 1)

+
1

θΓ(θ+ 2)

)
−

κθ

Γ(θ+ 1)

]
M1, κ ∈ [0, 1]

By (3.18) and (3.19), we conclude that

ω(κ) = N1 +

∫ 1

0
G(κ, s)M2ds ⩽ g(ω) +

∫ 1

0
G(κ, s)f(κ,ω(κ))ds.

Thus, the function ω(κ) is the upper solution of the Caputo problem (1.2).
By Theorem (3.6), we get that the problem (1.2) has at least one positive solution

ω(κ) ∈ Λ, which verifies the inequalities (3.16) and (3.17).

The final result is based on the Banach fixed point theorem.

Theorem 3.8. Assume that f : [0, 1]× R+ → R+ is continuous. Let (H1) holds,
If
(
Lg + 5θ+1

Γ(θ+2)Lf

)
< 1. Then the problem (1.2) has a unique solution ω(κ) ∈ C[0, 1].

Proof. Theorem 3.6 shows that the problem (1.2) has at least one positive solution in K

given by

ω(κ) = g(ω) +

∫ 1

0
G(κ, s)f(s,ω(s))ds, κ ∈ [0, 1]. (3.22)
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Hence, we need only to show that Q defined by

(Qω)(κ) = g(ω) +

∫ 1

0
G(κ, s)f(s,ω(s))ds, κ ∈ [0, 1] (3.23)

is contraction map in C[0, 1]. Indeed, by (H1) and (3.12), then for ω1,ω2 ∈ C[0, 1] and
κ ∈ [0, 1], we have

|(Qω1)(κ) − (Qω2)(κ)|

⩽ |g(ω1) − g(ω2)|+

∫ 1

0
|G(κ, s)| |f(s,ω1(s)) − f(s,ω2(s))|ds

⩽ Lg |ω1 −ω2|+ Lf

∫ 1

0
|G(κ, s)| |ω1(s) −ω2(s)|ds

⩽ Lg ∥ω1 −ω2∥+ Lf ∥ω1 −ω2∥
∫ 1

0
|G(κ, s)|ds

⩽

(
Lg +

5θ+ 1
Γ(θ+ 2)

Lf

)
∥ω1 −ω2∥ .

Since
(
Lg + 5θ+1

Γ(θ+2)Lf

)
< 1, Q is contraction mapping. As consequence of Theorem

??, we can conclude that Q has a unique fixed point which is the unique positive solution
of (1.2) on [0, 1].

4. Examples

In this section, we give two examples to illuminate our results.

Example 4.1. Consider the FDE with integral boundary condition

−CD
3
2
0+ω(κ) = 1 +

ω(κ)
6+sin(ω(κ)) , 0 < κ < 1,

ω(0) = ω′(0) + 1
8ω( 1

3),
ω(1) =

∫1
0 ω(κ)dκ,

(4.1)

where θ = 3
2 , g(ω) = 1

8ω( 1
3), and f(κ,ω) = 1 + ω

6+sin(ω) . It is easy to see that f is
continuous function and for all κ ∈ [0, 1], we have

|f(κ,ω1) − f(κ,ω2)| ⩽
1
6
|ω1 −ω2|, for ω1,ω2 ∈ [0,∞),

|g(ω1) − g(ω2)| ⩽
1
8
|ω1 −ω2|, for ω1,ω2 ∈ C[0, 1],

Therefore (H1) holds with Lf = 1
6 and Lg = 1

8 . Moreover, by some simple calculations, we
get

Lg +
5θ+ 1
Γ(θ+ 2)

Lf =
1
8
+

34
45

√
π
≈ 0.6 < 1.

All assumptions of Theorem 3.8 hold. Therefore, Theorem 3.8 guarantees that (4.1) has
a unique positive solution ω(κ) ∈ C[0, 1].
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Example 4.2. Consider the following FDE

−CD
7
4
0+ω(κ) = 4

17 (κ |sinω(κ)|+ 1) , 0 < κ < 1,
ω(0) = ω′(0) + 1

8

(
1 + sin( ω

1+ω)
)

,
ω(1) =

∫1
0 ω(κ)dκ,

(4.2)

where θ = 7
4 . Set f(κ,ω) = 4

17 (κ |sinω|+ 1) , g(ω) = 1
8

(
1 + sin( ω

1+ω)
)

. Then for κ ∈ [0, 1]
and ω ∈ R+, we have

|f(κ,ω)| =

∣∣∣∣ 4
17

κ sinω+
4
17

∣∣∣∣ ⩽ 4
17

(|ω|+ 1) ,

Therefore the condition (H2) holds with ρ(κ) = 4
17 and c1 = 4

17 . Also, for all κ ∈ [0, 1] and
ω ∈ C([0, 1], R+), we have

|g(ω)| ⩽
1
8

∣∣∣∣1 + sin
(

ω

1 +ω

)∣∣∣∣ ⩽ 1
8
+

1
8
|ω| .

So the condition (H4) holds with c2 = c3 = 1
8 . It is easy to verify that

5θ+ 1
Γ(θ+ 2)

c1 + c3 =≈ 0.64 < 1.

Therefore, all assumptions of Theorem 3.6 are satisfied. Thus the problem considered
(4.2) has a positive solution ω.

On the other hand, since f,g are continuous, then by some simple calculation, we have

4
17

⩽ f(κ,ω) ⩽
8
17

, (κ,ω) ∈ [0, 1]× [0,∞),

and
1
8
⩽ g(ω) ⩽

1
4

, ω ∈ [0,∞).

The functions f,g in the problem (4.2) verifies the assumptions of Corollary 3.7 with
M1 = 8

17 ,M2 = 4
17 ,N1 = 1

4 ,N2 = 1
8 . Then the Caputo problem (4.2) has a positive solution

which verifies ω(κ) ⩽ ω(κ) ⩽ ω(κ) where

ω(κ) =
1
8
+

8
17

(κ + 1)

[
3

7Γ( 11
4 )

+
4

7Γ( 15
4 )

−
κ 7

4

Γ( 11
4 )

]
, κ ∈ [0, 1],

and

ω(κ) =
1
4
+

16
17

(κ + 1)

[
3

7Γ( 11
4 )

+
4

7Γ( 15
4 )

−
κ 7

4

Γ( 11
4 )

]
, κ ∈ [0, 1],

are respectively the upper and lower solutions of Caputo problem (4.2).
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5. Conclusion

We investigated the existence and uniqueness of positive solutions for a class of Caputo-
type FDEs with nonlocal integral boundary conditions. The existence result is established
by using the Schauder fixed point technique on a cone, whereas the uniqueness result is
obtained via Banach’s fixed point theorem.In addition, our analysis is supported by the
properties of Green function and upper and lower control function. Some examples are
also constructed to substantiate our results. The proposed problem contributes to the
growth of FDEs with non-local integrated boundary conditions and with modern and sim-
ple techniques.
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