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Abstract

The given paper describes the implicit fractional differential equation with nonlinear integral bound-
ary conditions in the frame of Caputo-Katugampola fractional derivative. We obtain an analogous integral
equation of the given problem and prove the existence and uniqueness results of such a problem using the
Banach and Krasnoselskii fixed point theorems. To show the effectiveness of the acquired results, convenient
examples are presented.
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1. Introduction

The subject of fractional differential equations (FDEs) has lately developed as a moti-
vating area of research. In reality, fractional derivatives kinds supply an excellent tool for
the description of the memory and hereditary properties of different materials and opera-
tions. More researchers have established that FDEs show in many research scopes, such as
physics, chemical technology, biotechnology, population dynamics, and economics. There
has been considerable growth in FDEs involving many fractional derivatives such as Ca-
puto, Riemann-Liouville, Hilfer, and Hadamard have been investigated and advanced by
employing various tools from the nonlinear analysis. See the monographs of Podlubny [1],
Kilbas et al. [2], Malinowska et al. [3], and some articles, for e.g., [4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17] and the references cited therein. The forward evolution of the FDEs
have been caught much interest lately as study some results on the existence and unique-
ness of solutions of various types of FDEs under different conditions have been studied by
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many authors by employing fixed point techniques, see [18, 19, 20, 21, 22, 23, 24, 25, 26]
and many other references.

In recent years [27] the researcher inserted a new fractional integral, which general-
izes the Riemann-Liouville and Hadamard integrals into one form. For more properties
of this new operator and similar operators, can be seen in [28, 29]. The identical frac-
tional derivatives were established in [3, 30, 31] which named Katugampola fractional
operators.

The existence and uniqueness results of FDEs involving Caputo-Katugampola deriva-
tive

CKDσ;ρ
0+ ω(ϑ) = g(ϑ,ω(ϑ)), ϑ ∈ [0, T ], (1.1)

ω(k)(0) = ω(k)
0 , k = 0, 1, ...,m− 1 (1.2)

have been discussed using the Peano and Picard-Lindelö theorems in [32].
In [33], the author presented a new type of fractional operator as a generalization of

the Caputo and Caputo–Hadamard fractional derivative operators. Also, he applied the
Gronwall inequality type to obtain the uniqueness theorem of the problem (1.1)–(1.2).

In [34], the authors established the existence, uniqueness, and Ulam-Hyers stability
results of boundary value problems (BVP) for an implicit FDEs with anti-periodic condition
involving Caputo-Katugampola type

CKDσ;ρ
a+ω(ϑ) = g(ϑ,ω(ϑ),CKDσ;ρ

a+ω(ϑ)), ϑ ∈ J = [a, T ],

ω(a) +ω(T) = 0,

by applying some fixed point theorems and generalized Gronwall inequality.
Recently, there are some papers dealing with the qualitative properties of solutions of

nonlinear FDEs by using techniques of nonlinear functional analysis see for e.g. [35, 36,
37, 38, 39, 40, 41].

Motivated by the previous results, we study in this paper a new type of BVP for implicit
FDE that is

CKDσ;ρ
a+ω(ϑ) = g(ϑ,ω(ϑ),CKDσ;ρ

a+ω(ϑ)), ϑ ∈ J = [a, T ], (1.3)

ω(a) = 0, ω(T) =

∫ϑ
a

h(τ,ω(τ))dτ, (1.4)

where 1 < σ ⩽ 2, CKDσ;ρ
a+ is the Caputo-Katugampola fractional derivatives of order σ,

h : J× R −→ R and g : J× R × R −→ R are continuous functions.
The aim of this study is to extend and generalize some reported results in the literature

through investigation in the existence and uniqueness of solutions for the given problem
(1.3)–(1.4), in which the studied problem with nonlinear integral boundary condition is
more general. Our analysis is depends on Banach’s and Krasnoselskii’s fixed point theo-
rems [42].

The remainder of the paper is displayed as follows: In Section 2, we recall some
essential definitions and properties which will be useful throughout this article and we
proving some axiom lemmas which play a key role in the sequel. Section 3 contains
certain sufficient conditions to corroborate the existence and uniqueness results of the
problem (1.3)–(1.4) via fixed point techniques of Banach and Krasnoselskii. At the end,
some examples are involved to illustrate the applicability of the obtained results in Section
4.
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2. Preliminaries

For the sake of convenience of the readers, we present some background materials
from fractional calculus theory and nonlinear analysis [27, 30, 33, 34, 42, 43] to facilitate
the analysis of our problem (1.3)–(1.4).

Definition 2.1. [27] The Katugampola fractional integral of order σ > 0 with ρ > 0 is
defined by

Iσ;ρ
a+ z(ϑ) =

ρ1−σ

Γ(σ)

∫ϑ
a

τρ−1 (ϑρ − τρ)σ−1 z(τ)dτ, ϑ > a, (2.1)

if the integral exists, where, Γ(·) is a gamma function.

Definition 2.2. [30] The Katugampola fractional derivative of order σ (n− 1 < σ < n)
with ρ > 0 is defined as

Dσ;ρ
a+ z(ϑ) =

(
ϑ1−ρ d

dϑ

)n

In−σ;ρ
a+ z(ϑ)

=
γnρσ−n+1

Γ(n− σ)

∫ϑ
a

τρ−1 (ϑρ − τρ)n−σ−1 z(τ)dτ, ϑ > a, (2.2)

where γ =
(
ϑ1−ρ d

dϑ

)
and n = [σ] + 1.

Definition 2.3. [30] The Caputo-Katugampola fractional derivative of order σ > 0 with ρ
> 0 is defined by

CKDσ;ρ
a+ z(ϑ) = Dσ;ρ

a+

[
z(ϑ) −

n−1∑
k=0

z
(k)
ρ (a)

k!
(ϑ− a)k

]
, (2.3)

where z(k)ρ (ϑ) =
(
ϑ1−ρ d

dϑ

)k
z(ϑ). In case 1 < σ ⩽ 2, and z ∈ C2(J, R), we have

CKDσ;ρ
a+ z(ϑ) = Dσ;ρ

a+

[
z(ϑ) − z(a) − z′p(a) (ϑ− a)

]
. (2.4)

One has
CKDσ;ρ

a+ z(ϑ) = In−σ;ρ
a+

(
ϑ1−ρ d

dϑ

)n

z(ϑ).

Lemma 2.4. [27, 33] Iσ;ρ
a+ , CKDσ;ρ

a+ are bounded operators from C[a, T ] into C[a, T ].

Lemma 2.5. [33] Let σ > 0, β > 0, z ∈ C1[a, T ]. Then we have

Iσ;ρ
a+ Iβ;ρ

a+ z(ϑ) = Iσ+β;ρ
a+ z(ϑ), CKDσ;ρ

a+
ρIσa+z(ϑ) = z(ϑ).

Lemma 2.6. [27, 33] Let σ > 0 and δ > n− 1. Then we have

Iσ;ρ
a+ (ϑρ − aρ)δ =

ρ−σ Γ(δ+ 1)
Γ(δ+ σ+ 1)

(ϑρ − aρ)σ+δ ,

CKDσ;ρ
a+ (ϑρ − aρ)δ =

ρσ Γ(δ+ 1)
Γ(δ− σ+ 1)

(ϑρ − aρ)δ−σ ,

and
CKDσ;ρ

a+ (ϑρ − aρ)k = 0, σ ⩾ 0, k = 0, 1, ...,n− 1.
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Lemma 2.7. [32, 34] Let σ, ρ > 0 and z ∈ C(J, R)∩C1(J, R). Then the Caputo-Katugampola
type FDE

CKDσ;ρ
a+ z(ϑ) = 0

has a solution

z(ϑ) = c0 + c1

(
ϑρ − aρ

ρ

)
+ c2

(
ϑρ − aρ

ρ

)2

+ .... + cn−1

(
ϑρ − aρ

ρ

)n−1

,

where ci ∈ R, i = 0, 1, 2, ...,n− 1 and n = [σ] + 1.
Moreover, if CKDσ;ρ

a+ z ∈ C(J, R)∩C1(J, R). Then

Iσ;ρ
a+

CKDσ;ρ
a+ z(ϑ) = z(ϑ) + c0 + c1

(
ϑρ − aρ

ρ

)
+ c2

(
ϑρ − aρ

ρ

)2

+.... + cn−1

(
ϑρ − aρ

ρ

)n−1

,

where ci ∈ R, i = 0, 1, 2, ...,n− 1 and n = [σ] + 1.

Theorem 2.8. [42] (Banach fixed point theorem) Let (X,d) be a nonempty complete metric
space with F : X→ X is a contraction mapping. Then map F has a fixed point.

Theorem 2.9. [42] (Krasnoselskii’s fixed point theorem) Let X be a Banach space, letΩ be a
bounded closed convex subset of X and let F1, F2 :Ω→ Ω a be mapping such that F1x+ F2y ∈
Ω for every pair x,y ∈ Ω. If F1 is contraction and F2 is completely continuous, then there
exists z ∈ Ω such that F1z+ F2z = z.

3. Existence and uniqueness theorems for (1.3)–(1.4)

In this section, we give the results on the existence, the uniqueness of solution for
problem (1.3)–(1.4) depending on Theorems 2.8, 2.9. The next lemma plays a necessary
role in analysis our results.

Lemma 3.1. Let 1 < σ ⩽ 2, ρ > 0 and ϖ, h ∈ C(J, R). Then a function ω is a solution of
the Caputo-Katugampola type FDE

CKDσ;ρ
a+ω(ϑ) = ϖ(ϑ), ϑ ∈ J, (3.1)

ω(a) = 0, ω(T) =

∫ϑ
a

h(τ)dτ, (3.2)

if ω(ϑ) satisfies the following fractional integral equation

ω(ϑ) =

(
ϑρ − aρ

Tρ − aρ

)[∫T
a

h(τ)dτ−
ρ1−σ

Γ(σ)

∫T
a

τρ−1(Tρ − τρ)σ−1ϖ(τ)dτ

]

+
ρ1−σ

Γ(σ)

∫ϑ
a

τρ−1(ϑρ − τρ)σ−1ϖ(τ)dτ. (3.3)
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Proof. Applying Iσ;ρ
a+ on both sides of (3.1, and employing Lemma (2.7), we get

ω(ϑ) = c0 + c1

(
ϑρ − aρ

ρ

)
+
ρ1−σ

Γ(σ)

∫ϑ
a

τρ−1(ϑρ − τρ)σ−1ϖ(τ)dτ, (3.4)

where c0, c1 ∈ R. Take the limit of the equations (3.4) as ϑ → a, ϑ → T respectively, it
follows from the integral boundary conditions (3.2) that

c0 = 0, (3.5)

and

c1 =
ρ

Tρ − aρ

[∫T
a

h(τ)dτ−
ρ1−σ

Γ(σ)

∫T
a

τρ−1(Tρ − τρ)σ−1ϖ(τ)dτ

]
. (3.6)

Substitute (3.5) and (3.6) into (3.4), we obtain

ω(ϑ) =

(
ϑρ − aρ

Tρ − aρ

)[∫T
a

h(τ)dτ−
ρ1−σ

Γ(σ)

∫T
a

τρ−1(Tρ − τρ)σ−1ϖ(τ)dτ

]

+
ρ1−σ

Γ(σ)

∫ϑ
a

τρ−1(ϑρ − τρ)σ−1ϖ(τ)dτ.

The converse follows by Lemmas 2.5 and 2.6. The proof is completed.

As result of Lemma 3.1, we have the following Lemma:

Lemma 3.2. Assume that g : J× R × R → R and h : J× R → R are continuous and ω be
a function. The problem (1.3)–(1.4) has a solution ω(ϑ) if and only if ω(ϑ) is a fixed-point
of the operator F : C(J, R) → C(J, R) defined by

Fω(ϑ) =

(
ϑρ − aρ

Tρ − aρ

)[∫T
a

h(τ,ω(τ))dτ−
ρ1−σ

Γ(σ)

∫T
a

τρ−1(Tρ − τρ)σ−1Gω(τ)dτ

]

+
ρ1−σ

Γ(σ)

∫ϑ
a

τρ−1(ϑρ − τρ)σ−1Gω(τ)dτ. (3.7)

and Gω(ϑ) : [a, T ] → R be a function satisfying the functional equation

Gω(ϑ) := g(ϑ,ω(ϑ),CKDσ;ρ
a+ω(ϑ))

Clearly, Gω ∈ C[J, R]. In addition, by Lemma 2.4, Fω ∈ C[J, R].

Now, we present results on the existence and uniqueness of solution for the problem
(1.3)–(1.4) depending on Theorems 2.8, 2.9. Assume that the functions g : J×R×R → R

and h : J× R → R are continuous and satisfy the following conditions:

(H1) There exists a constant 0 < Lg < 1 such that:

|g(ϑ, x1, x2) − g(ϑ,y1,y2)| ⩽ Lg [|x1 − y1|+ |x2 − y2|] , ∀ϑ ∈ J, xi,yi ∈ R, (i = 1, 2).

(H2) There exists a constant 0 < Lh < 1 such that:

|h(ϑ, x) − h(ϑ,y)| ⩽ Lh |x− y| , ∀ϑ ∈ J, x,y ∈ R.
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(H3) The following inequaility holds

Υ : =Lh(T − a) +
2Lgρ−σ

1 − Lg

(Tρ − aρ)σ

Γ(σ+ 1)
< 1. (3.8)

Theorem 3.3. Suppose that (H1), (H2) and (H3) hold. Then the problem (1.3)–(1.4) has a
unique solution on J.

Proof. First, we show that FBr ⊆ Br, such that be F : C(J, R) → C(J, R) defined by (3.7)
and

Br = {ω ∈ C(J, R), ∥ω∥ ⩽ r}, (3.9)

with select r ⩾ Θ
1−Υ , where Υ < 1 and

Θ : =

(
µh(T − a) +

2µgρ−σ

1 − Lg

(Tρ − aρ)σ

Γ(σ+ 1)

)
.

Set supϑ∈J |g(ϑ, 0, 0)| := µg <∞, and supϑ∈J |h(ϑ, 0)| := µh. For ϑ ∈ J, with our hypothe-
ses we have

|Fω(ϑ)| ⩽

{(
ϑρ − aρ

Tρ − aρ

)[∫T
a

|h(τ,ω(τ))|dτ+
ρ1−σ

Γ(σ)

∫T
a

τρ−1(Tρ − τρ)σ−1 |Gω(τ)|dτ

]

+
ρ1−σ

Γ(σ)

∫ϑ
a

τρ−1(ϑρ − τρ)σ−1 |Gω(τ)|dτ

}
.

From (H1), we have

|Gω(τ)| =
∣∣g(τ,ω(τ),CKDσ;ρ

a+ω(τ))
∣∣

⩽
∣∣g(τ,ω(τ),CKDσ;ρ

a+ω(τ)) − g(τ, 0, 0)
∣∣+ |g(τ, 0, 0)|

⩽ Lg |ω(τ)|+ Lg
∣∣CKDσ;ρ

a+ω(τ)
∣∣+ µg

= Lg |ω(τ)|+ Lg |Gω(τ)|+ µg.

Since Lg < 1 and for any ω∈Br, we get

|Gω(τ)| ⩽
(Lgr+ µg)

1 − Lg
. (3.10)

From (H2), we obtain

|h(τ,ω(τ))| ⩽ |h(τ,ω(τ)) − h(τ, 0)|+ |h(τ, 0)|
⩽ Lh |ω(τ)|+ µh.

For ω∈Br,
|h(τ,ω(τ))| ⩽ Lhr+ µh. (3.11)
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Consequently,

|Fω(ϑ)|

⩽

{(
ϑρ − aρ

Tρ − aρ

)[
(Lhr+ µh)

∫T
a

dτ+
(Lgr+ µg)

1 − Lg

ρ1−σ

Γ(σ)

∫T
a

τρ−1(Tρ − τρ)σ−1dτ

]

+
(Lgr+ µg)

1 − Lg

ρ1−σ

Γ(σ)

∫ϑ
a

τρ−1(ϑρ − τρ)σ−1dτ

}

⩽

[
(Lhr+ µh)(T − a) +

(Lgr+ µg) ρ
−σ

1 − Lg

(Tρ − aρ)σ

Γ(σ+ 1)

]
+
(Lgr+ µg) ρ

−σ

1 − Lg

(Tρ − aρ)σ

Γ(σ+ 1)

=

(
Lh(T − a) +

2Lgρ−σ

1 − Lg

(Tρ − aρ)σ

Γ(σ+ 1)

)
r

+

(
µh(T − a) +

2µgρ−σ

1 − Lg

(Tρ − aρ)σ

Γ(σ+ 1)

)
= Υr+Θ < r,

which gives ∥Fω∥ < r, i.e. Fω ∈ Br. Moreover, by (3.7), and lammas 2.5, 2.6, we deduce

CKDσ;ρ
a+ Fω(ϑ) = CKDσ;ρ

a+ Iσ;ρ
a+ Gω(ϑ) = Gω(ϑ).

Since Gω(·) is continuous on J, the operator CKDσ;ρ
a+ Fω(ϑ) is continuous on J, that is

F Br ⊆ Br.
Second, we apply the Theorem 2.8 to show that F has a fixed point. In fact, it sufficient

to prove that F is contraction. Let ω1,ω2 ∈ C(J, R) and ϑ ∈ J. Then

|Fω1(ϑ) − Fω2(ϑ)|

⩽

(
ϑρ − aρ

Tρ − aρ

){∫T
a

|h(τ,ω1(τ)) − h(τ,ω2(τ))|dτ

+
ρ1−σ

Γ(σ)

∫T
a

τρ−1(Tρ − τρ)σ−1 |Gω1(τ) − Gω2(τ)|dτ

}

+
ρ1−σ

Γ(σ)

∫ϑ
a

τρ−1(ϑρ − τρ)σ−1 |Gω1(τ) − Gω2(τ)|dτ. (3.12)

By (H1), we get

|Gω1(τ) − Gω2(τ)|

=
∣∣g(τ,ω1(τ),CKDσ;ρ

a+ω1(τ)) − g(τ,ω2(τ),CKDσ;ρ
a+ω2(τ))

∣∣
⩽ Lg |ω1 −ω2|+ Lg

∣∣CKDσ;ρ
a+ω1(τ) −

CKDσ;ρ
a+ω2(τ)

∣∣
= Lg |ω1 −ω2|+ Lg |Gω1(τ) − Gω2(τ)| ,

which yields

|Gω1(τ) − Gω2(τ)| ⩽
Lg

1 − Lg
|ω1 −ω2| , (3.13)



S.S. Redhwan, S.L. Shaikh /Analysis of implicit type of a generalized FDEs 71

and using (H2), we obtain

|h(τ,ω1(τ)) − h(τ,ω2(τ))| ⩽ Lh |ω1 −ω2| . (3.14)

The relations (3.13), (3.14) and (3.12) give

∥Fω1 − Fω2∥

⩽

(
ϑρ − aρ

Tρ + aρ

){
Lh

∫T
a

dτ

+
Lg

1 − Lg

ρ1−σ

Γ(σ)

∫T
a

τρ−1(Tρ − τρ)σ−1dτ

}
∥ω1 −ω2∥

+
Lg

1 − Lg

ρ1−σ

Γ(σ)

∫ϑ
a

τρ−1(ϑρ − τρ)σ−1dτ ∥ω1 −ω2∥

⩽

[
Lh(T − a) +

2Lgρ−σ

1 − Lg

(Tρ − aρ)σ

Γ(σ+ 1)

]
∥ω1 −ω2∥

= Υ ∥ω1 −ω2∥ .

Since Υ < 1, the operator F is contraction. Consequently, Theorem 2.8 shows that the
problem (1.3)–(1.4) has a unique solution.

Our second existence result for the problem (1.3)–(1.4) is based on the Theorem 2.9.

Theorem 3.4. Suppose that (H1), (H2) and (H3) hold. Then there exist at least one solution
of the problem (1.3)–(1.4) on J.

Proof. Consider the operator F defined by (3.7). Set the ball Br0 := {ω ∈ C(J, R) : ∥ω∥ ⩽
r0}, with r0 ⩾ Θ

1−Υ , where Θ and Υ is defined as in Theorem 3.3. Moreover, we define the
operators F1 and F2 on Br0 by

F1ω(ϑ) =

(
ϑρ − aρ

Tρ − aρ

)[∫T
a

h(τ,ω(τ))dτ−
ρ1−σ

Γ(σ)

∫T
a

τρ−1(Tρ − τρ)σ−1Gω(τ)dτ

]

and

F2ω(ϑ) =
ρ1−σ

Γ(σ)

∫ϑ
a

τρ−1(ϑρ − τρ)σ−1Gω(τ)dτ.

Clearly, for any ω ∈ C(J, R),

Fω(ϑ) = F1ω(ϑ) + F2ω(ϑ), ϑ ∈ J.

The proof will be divided into several stages as follows:
Stage 1: F1ω1 + F2ω2 ∈ Br0 for every ω1,ω2 ∈ Br0 .
Applying the same arguments in (3.10) and (3.11), we obtain

|Gω1(τ)| ⩽
Lgr0 + µg

1 − Lg
, and |Gω2(τ)| ⩽

Lgr0 + µg
1 − Lg

,

|h(τ,ω1(τ))| ⩽ Lhr0 + µh, and |h(τ,ω2(τ))| ⩽ Lhr0 + µh.
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For each ω1,ω2 ∈ Br0 and ϑ ∈ J, we have

|F1ω1(ϑ) + F2ω2(ϑ)|

⩽ |F1ω1(ϑ)|+ |F2ω2(ϑ)|(
ϑρ − aρ

Tρ − aρ

)[∫T
a

|h(τ,ω1(τ))|dτ+
ρ1−σ

Γ(σ)

∫T
a

τρ−1(Tρ − τρ)σ−1 |Gω1(τ)|dτ

]

+
ρ1−σ

Γ(σ)

∫ϑ
a

τρ−1(ϑρ − τρ)σ−1 |Gω2(τ)|dτ

⩽

[(
Lh(T − a) +

Lgρ
−σ

1 − Lg

(Tρ − aρ)σ

Γ(σ+ 1)

)
+
Lgρ

−σ

1 − Lg

(Tρ − aρ)σ

Γ(σ+ 1)

]
r0

+

[(
µh(T − a) +

µgρ
−σ

1 − Lg

(Tρ − aρ)σ

Γ(σ+ 1)

)
+
µgρ

−σ

1 − Lg

(Tρ − aρ)σ

Γ(σ+ 1)

]
=

(
Lh(T − a) +

2Lgρ−σ

1 − Lg

(Tρ − aρ)σ

Γ(σ+ 1)

)
r0

+

(
µh(T − a) + 2

µgρ
−σ

1 − Lg

(Tρ − aρ)σ

Γ(σ+ 1)

)
= Υr0 +Θ < r0,

which implies
∥F1ω1 + F2ω2∥ ⩽ r0. (3.15)

This proves that F1ω1 + F2ω2 ∈ Br0 for every ω1,ω2 ∈ Br0 .
Stage 2 F1 is a contration mapping on Br0 .
Since F is contraction mapping as in Theorem 3.3, then F1 is a contraction map too.
Stage 3. Here, we shall prove that operator F2 is completely continuous on Br0 .
Obviously, F2 is continuous due to the continuity of Gω(·).
Next, it is not difficult to conclude that

∥F2ω∥ ⩽
Lgr0 + µg

1 − Lg

ρ−σ

Γ(σ+ 1)
(Tρ − aρ)σ < r0,

due to definitions of Υ and r0. This verifies that F2 is uniformly bounded on Br0

Finally, we show that F2 maps bounded sets into equicontinuous sets of C(J, R).
Let ϑ1, ϑ2 ∈ J, with ϑ1 < ϑ2 and for any ω ∈ Br0 . Then we have

|F2ω(ϑ2) − F2ω(ϑ1)|

=

∣∣∣∣∣ρ1−σ

Γ(σ)

∫ϑ2

a

τρ−1(ϑρ2 − τρ)σ−1Gω(τ)dτ−
ρ1−σ

Γ(σ)

∫ϑ1

a

τρ−1(ϑρ1 − τρ)σ−1Gω(τ)dτ

∣∣∣∣∣
⩽

ρ1−σ

Γ(σ)

∫ϑ1

a

τρ−1 [(ϑρ2 − τρ)σ−1 − (ϑρ1 − τρ)σ−1] |Gω(τ)|dτ

+
ρ1−σ

Γ(σ)

∫ϑ2

ϑ1

τρ−1(ϑρ2 − τρ)σ−1 |Gω(τ)|dτ

⩽
Lgr0 + µg

1 − Lg

ρ−σ

Γ(σ+ 1)
(ϑ2 − ϑ1)

σ.
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As ϑ1 −→ ϑ2 the right-hand side of the above inequality is not dependent on ω and
tends to zero. Therefore,

|F2ω(ϑ1) − F2ω(ϑ2)| → 0, ∀ |ϑ2 − ϑ1| → 0, ω ∈ Br0 .

This proves that F2 is equicontinuous on Br0 . An application of Arzela-Ascoli Theorem
shows that F2 is relatively compact on Br0 . Hence all the assumptions of the Theorem 2.9
are satisfied. Thus, we deduce that the problem (1.3)–(1.4) has at least one solution on
J.

4. An example

Here, we stipulate an interpretative example to support the obtained results.

Example 4.1. Consider the following implict FDE

CKD
3
2 ; 1

2
0+ ω(ϑ) =


 1

9e
√
ϑ+1 +

5+|ω(ϑ)|+

∣∣∣∣CKD
3
2 ; 1

2
0+

ω(ϑ)

∣∣∣∣
12e2−ϑ

(
1+|ω(ϑ)|+

∣∣∣∣CKD
3
2 ; 1

2
0+

ω(ϑ)

∣∣∣∣)
 , ϑ ∈ [0, 1],

ω(0) = 0, ω(1) =
∫1

0
cosω(τ)

20(ϑ+2)(1+ω(τ))dτ.

. (4.1)

where σ = 3
2 and ρ = 1

2 . Take

g(ϑ,u, v) =
[

1
9
e
√
ϑ+1 +

5 + u+ v

12e2−ϑ (1 + u+ v)

]
, ϑ ∈ [0, 1],u, v ∈ R+,

h(ϑ,u) =
cosu

20(ϑ+ 2)(1 + u)
, ϑ ∈ [0, 1],u ∈ R+

Obviously, the functions g, h ∈ C([0, 1], R). Moreover, supϑ∈J |g(ϑ, 0, 0)| = 1
9e

2 + 5
12e =

µg <∞, and supϑ∈J |h(ϑ, 0)| = 1
40 = µh <∞. For each u, v,u∗, v∗ ∈ R+ and ϑ ∈ [0, 1], we

have

|g(ϑ,u, v) − g(ϑ,u∗, v∗)| =

∣∣∣∣ 5 + u+ v

12e2−ϑ (1 + u+ v)
−

5 + u∗ + v∗

12e2−ϑ (1 + u∗ + v∗)

∣∣∣∣
⩽

1
12e2−ϑ

(|u− u∗|+ |v− v∗|)

⩽
1

12e
(|u− u∗|+ |v− v∗|) ,

and

|h(ϑ,u) − h(ϑ,u∗)| =

∣∣∣∣ cosu
20(ϑ+ 2)(1 + u)

−
cosu∗

20(ϑ+ 2)(1 + u∗)

∣∣∣∣
⩽

1
20

|u− u∗|

Hence, the assumption (H1) and (H2) is satisfied with Lg = 1
12e , Lh = 1

20 respectively.
We can easily check that (H3). It can be seen by direct calculations that Υ = 0.18458 < 1.
Since all the assumptions of Theorem (3.3) are obtained, therefore problem (4.1) has a
unique solution.
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5. Conclusions

In this article, we have studied a type of a nonlinear IFDE with the nonlinear integral
boundary condition involving a Caputo-Katugampola fractional derivative. We have also
established sufficient conditions ensuring existence, and uniqueness of solutions for a pro-
posed proplem by applying some fixed point theorems. We confident the obtained results
here will have a favorable impact on the evolution of more applications in applied sciences
and engineering.
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