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Abstract

Poultry production contributes immensely to the economic growth of a country. For instance in Kenya, 20
tonnes of poultry meat worth 3.5 billion kenya shillings and 1.3 billion eggs worth 9.7 billion Kenya Shillings
come from this sector. However, the sector is greatly threatened by poultry diseases among them, Gum-
boro(IBD) and Salmonella as inadequate knowledge exists of optimal control strategies for various poultry
co-infections. In this research, a Gumboro-Salmonella co-infection mathematical model with optimal control
is developed using a system of ODEs to perform an optimal control analysis. The analysis was done by for-
mulating an optimal control problem and using Pontryagin’s maximum principle to solve it. The Numerical
simulation results showed that the best Gumboro-Salmonella co-infection control strategy involved combining
all the interventions
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1. Introduction

Poultry production is an enterprise that plays a major role in the growth of an econ-
omy as well as in poverty reduction. The poultry population in Kenya is estimated to be
31 million birds of which the Indigenous chicken form 75%, broilers 22%, breeding stock
1%, and 2% of all other poultry species such as Turkey, Ostriches, Pigeons, Geese, Guinea
fowl, and Ducks [1].

In Kenya each year, about 20 tonnes of poultry meat worth 3.5 billion Kenya shillings and
1.3 billion eggs worth 9.7 billion Kenya shillings come from the poultry sector,a production
which has greatly increased due to increased demand for quality protein [2]. Indigenous
chickens which form the largest of the chicken population are kept by the rural community
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under a free range system by children and women since bird keeping is a less involving
activity[3].

The commercialization of chicken is an emerging phenomenon that is rapidly gaining pop-
ularity. However, the sector is greatly threatened by diseases classified as biological, viral
and parasitic poultry diseases with Gumboro and Salmonella forming a part of these dis-
eases that lead to huge economic loss in the poultry industry [4].

Gumboro disease also called Infectious bursal disease(IBD) is a viral disease caused by
IBD-virus transmitted through feacal-oral route(Horizontal transmission) [5]. The dis-
ease was reported in 1957 in Delmarva Pensulla leading to acute morbidity and mortal-
ity in broilers with first Kenya’s Gumboro case reported in 1991 in commercial birds on
the Kenyan coast and since then the disease has remained a great threat to the poultry
industry[6].

Salmonella on the other hand is a bacterial disease caused by strains of bacteria [7].
The disease is transmitted both Horizontally and vertically with exposed animals(infected
but symptoms haven’t started showing) such as poultry and pigs being the main disease
spreaders to other flocks, animals, and even human beings[8].

Mathematical modelling has been considered as a crucial tool in comprehending trans-
mission dynamics for various diseases so as to manage them. Scientists have developed
various mathematical models to investigate the transmission dynamics of various poul-
try diseases as well as their preventive and control strategies. For instance, mathematical
models to investigate impacts of various control strategies on the transmission dynamics of
Avian influenza disease in both human and poultry populations have been developed (see
details in [9, 10, 11]), mathematical models for fowl pox disease were formulated and
analyzed by [12, 13, 14], to investigate the transmission dynamics of above-mentioned
disease in poultry with controls. Additionally, an optimal control model for newcastle dis-
ease was developed and analysed (see details in[15, 16]).

A number of models that describe the dynamics of Gumboro disease(disease in question)
have been studied in the recent past (see[17, 18, 19]), However, few models have been
proposed to study salmonella disease. For instance, a mathematical model to analyze the
transmission dynamics of salmonella disease by[20].

It is important to note that scholars have developed co-infection mathematical mod-
els for various Human diseases to describe their transmission dynamics (see details in
[21, 22, 23]), and as Co-infection affects the course of infection in human beings, so it
does in plants and even poultry. However, co-infection in poultry is an overlooked area and
therefore this research work aims to study the optimal control of Gumboro-Salmonella co-
infection in poultry to establish an effective strategy so as to avoid endemicity of Gumboro-
Salmonella co-infection in poultry.

2. Model Formulation

This research builds upon a study conducted by [19] which described the Transmis-
sion dynamics of Gumboro disease. To describe the dynamics of Gumboro-Salmonella
co-infection we developed a ten-compartmental model in which the chicken population
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Figure 1: Flow chart of epidemic chicken population

was divided into eight classes namely; susceptible chicken S, birds at early stages of Gum-
boro infections Eg, birds at early stages of Salmonella infection Es, birds at early stages
of Gumboro-Salmonella co-infection Egs, birds at acute stages of Gumboro infection Ig,
at acute stages Salmonella infection Is, birds at acute stages of Gumboro-Salmonella co-
infection Igs and birds Recovered from Gumboro, Salmonella, and Gumboro-Salmonella
diseases in both early and acute stages of infections simultaneously R and pathogen pop-
ulation divided into two compartments namely Gumboro virus concentration in the envi-
ronment CV and Salmonella bacteria concentration in the environment CB. Thus the total
population at a given time (t) is N(t) = Nc(t) +Ng(t) +Ns(t).The model was schematically
described in Figure 1.

From Figure 1, the following equations were derived:

dS

dt
= Λ − (1 − u1)γsS− (1 − u2)γgS− ηS

dEs

dt
= (1 − u1)γsS + (πg + u4)Egs − (1 − u2)γgEs − (σs + u3)Es − (ϕs + η + κ)Es

dEg

dt
= (1 − u2)γgS + (πs + u3)Egs − (1 − u1)γsEg − (σg + u4)Eg − (ϕg + η + µ)Eg

dEgs

dt
= (1 − u1)γsEg + (1 − u2)γgEs − (πs + u3)Egs − (πg + u4)Egs − (σgs + u5)Egs

−(ϕgs + η + µ + κ)Egs

dIs

dt
= ϕsEs + (θg + u4)Igs − ξ(1 − u2)γgIs − (δs + u3)Is − (η + κ)Is

dIg

dt
= ϕgEg + (θs + u3)Igs − ξ(1 − u1)γsIg − (δg + u4)Ig − (η + µ)Ig

dIgs

dt
= ξ(1 − u1)γsIg + ξ(1 − u2)γgIs + ϕgsEg − (θs + u3)Igs − (θg + u4)Igs − (δgs + u5)Igs
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−(η + µ + κ)Igs
dR

dt
= (σs + u3)Es + (σg + u4)Eg + (σgs + u5)Egs + (δs + u3)Is + (δg + u4)Ig + (δgs + u5)Igs

−ηR

dCB

dt
= ρ1Es + ρ2Is + ρ3Egs + ρ4Igs − (α1 + u6)CB

dCV

dt
= ω1Eg + ω2Ig + ω3Egs + ω4Igs − (α2 + u7)CV

(2.1)

Where Λ is the recruitment rate of birds to the susceptible class through Hatching and
migration, the Susceptible birds are infected with Gumboro and salmonella diseases at the
rate of γg = ωCV

τ2+CV
and γs = ρCB

τ1+CB
respectively. Where, ω is the contact rate of susceptible

birds with an infectious bursal disease(IBD) virus-contaminated environment, τ2 is the
IBD-virus concentration in the environment with a 50 percent probability of Gumboro
infections, ρ is the contact rate of susceptible birds with a salmonella typhi bacteria in the
environment and τ1 is the salmonella typhi concentration in the environment that have
50 percent probability of salmonella disease infections. All bird populations experience
natural death at the rate η and they also die from Gumboro and salmonella at the rates
µ and κ respectively. The Gumboro-infected birds in both stages of infection shed the
virus to the environment at the rates ω1−4 which die at the rate α2, while the Salmonella
infected birds in both stages of infection shed the bacteria to the environment at the
rates ρ1−4 which die at the rate α1. ξγg and ξγs are the infection rates of Is and Ig
with Gumboro and Salmonella diseases respectively. While πs, θs, πg, θg, σg, σs, σgs,
δg, δs, δgs are recovery rates. Birds at the early stages of Gumboro, Salmonella, and
Gumboro–Salmonella infections move to the acute stages of infection at the rates ϕg,
ϕs and ϕgs respectively. Additionally, the time-dependent control measures (ui(t), i =
1, 2, 3......7) defined as;

(i) u1 -Vaccination of susceptible birds against Salmonella disease to boost their immu-
nity hence preventing salmonella infections.

(ii) u2 Vaccination of susceptible birds against Gumboro disease to boost their immunity
hence preventing Gumboro disease infections.

(iii) u3-Treatment of Salmonella-infected birds by applying supportive measures such as
administration of mild antibiotics.

(iv) u4-Treatment of Gumboro disease by use of supportive measures such as proper
ventilation, increased intake of clean and quality water, and antistress multivitamins.

(v) u5-treatment of birds with Gumboro-Salmonella co-infection using Supportive mea-
sures.That is combining the treatment of Salmonella and Gumboro diseases.

(vi) u6- Elimination of Salmonella bacteria from the environment using relevant disin-
fectants and detergents such as TH4, Norocleanse, and ultrawide.

(vii) u7- Eradication of Gumboro virus from the environment through curling and proper
disposal of critical Gumboro cases.
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3. Basic properties of the model

Here the positivity and boundedness of the model solutions is discussed.

3.1. Positivity of the solutions of the co-infection model
Lemma 3.1. Let S(0) > 0, Es(0) ⩾ 0, Eg(0) ⩾ 0, Egs(0) ⩾ 0, Is(0) ⩾ 0, Ig(0) ⩾
0, Igs(0) ⩾ 0, R(0) ⩾ 0, CB(0) ⩾ 0, CV (0) ⩾ 0 be the initial conditions of the system then
the solution set {S, Es, Eg, Egs, Is, Ig, Igs, R, CB, CV }(t) of model (2.1) is non-negative
for all t > 0

Proof. From the first equation of system (2.1)
ds
dt = Λ − ((1 − u1)γs + (1 − u2)γg + η)S
we have

ds

dt
> −((1 − u1)γs + (1 − u2)γg + η)S. (3.1)

Separating the variables we obtain

ds

s
> −((1 − u1)γs + (1 − u2)γg + η)dt (3.2)

Integrating on both sides of equation (3.2) we have
lnS > −((1 − u1)γs + (1 − u2)γg + η)t + c1
or

S(t) > ce−((1−u1)γs+(1−u2)γg+η)t (3.3)

From equation (3.3), it is clear that S(0) = c for t = 0.
Therefore, S(t) > S(0)e−((1−u1)γs+(1−u2)γg+η)t and as t −→ ∞ we have S(t) > 0 ∀ t > 0.
Also from the second equation of system (2.1);
dEs

dt = (1 − u1)γsS + (πg + u4)Egs − (1 − u2)γgEs − (σs + u3)Es − (ϕs + η + κ)Es

we have
dEs

dt ⩾ −((1 − u2)γg + σs + u3 + ϕs + η + κ)t
solving the above equation by separation of variables we have
lnEs(t) ⩾ −((1 − u2)γg + σs + u3 + ϕs + η + κ)t + c

which implies that
lnEs(t) > ce−((1−u2)γg+σs+u3+ϕs+η+κ)t (3.4)

Clearly for t = 0, c = Es(0).
Thus, equation (3.4) becomes;
Es(t) ⩾ Es(0)e−((1−u2)γg+σs+u3+ϕs+η+κ)t

and as t −→ ∞,we have
Es(t) ⩾ 0 ∀ t > 0
Applying the same method to other equations of the system (2.1) we get
Eg(t) ⩾ Eg(0)e−((1−u1)γs+σg+u4+ϕg+η+µ)Eg ⩾ 0;
Egs(t) ⩾ Egs(0)e−(u4+πg+u3+πs+u5σgs+η+µ+κ) ⩾ 0;
Is(t) ⩾ Is(0)e−(ξ(1−u2)γg+δs+u3+η+κ)t ⩾ 0
Ig(t) ⩾ Ig(0)e−(ξ(1−u1)γs+δg+u4+η+µ)t ⩾ 0
Igs(t) ⩾ Igs(0)e−(θs+u3+θg+u4+δgs+u5+η+µ+κ)t ⩾ 0
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R(t) ⩾ R(0)e−ηt ⩾ 0
CB(t) ⩾ CB(0)e−α1t ⩾ 0
CV (t) > CV (0)e−α2t ⩾ 0 hence proof of the theorem.

3.2. Boundedness of the solutions of the co-infection model

Let Ω = (ΩC ∪ ΩCB
∪ ΩCV

) ⊂ R10
+ be a feasible region in which the solutions of the

total population are bounded. Where ΩC is the feasible region of the solutions of birds
population and that of Salmonella and Gumboro pathogens population is given by ΩCB

and ΩCV
respectively. We show that the solutions of the system (2.1) are bounded in the

feasible region.

The total bird population is NC given by
NC = S(t) + Es(t) + Eg(t) + Egs(t) + Is(t) + Ig(t) + Igs(t) + R(t)
and
dNC

dt = dS
dt + dEs

dt + dEg

dt + dEgs

dt + dIs
dt + dIg

dt + dIgs
dt + dR

dt

Thus, from system (2.1) we have

dNC

dt
= Λ − η(S(t) + Es(t) + Eg(t) + Egs(t) + Is(t) + Ig(t) + Igs(t) + R(t))

− (κEs + µEg + µEgs + κEgs + κIs + µIg + µIgs + κIgs). (3.5)

When the birds are not infected, equation (3.5) reduces to

dNC

dt
⩽ Λ − ηNc (3.6)

Upon solving the equation (3.6), we get

Nc(t) ⩽
Λ
η

+ (Nc(0) −
Λ
η

)e−ηt (3.7)

and taking limits as t −→ ∞ we have

Nc ⩽
Λ
η

(3.8)

Thus the birds population is bounded in

ΩC =
{

(S(t), Es(t), Eg(t), Egs(t), Is(t), Ig(t), Igs(t), R(t)) ∈ R8
+ : Nc ⩽

Λ
η

}
Considering the Salmonella pathogens population compartment, that is the ninth equation
of system (2.1),we have;

dCB

dt
= ρ1Es + ρ2Is + ρ3Egs + ρ4Igs −α1CB, (3.9)

equation (3.9) reduces to

dNs

dt
⩽

Λ(ρ1 + ρ2 + ρ3 + ρ4)
η

−α1Ns. (3.10)
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Solving equation (3.10) for Ns, yields

Ns(t) ⩽
Λ(ρ1 + ρ2 + ρ3 + ρ4)

ηα1
+
(
Ns(0) −

Λ(ρ1 + ρ2 + ρ3 + ρ4)
ηα1

)
e−α1t (3.11)

and taking limits as t −→ ∞ we obtain

Ns(t) ⩽
Λ(ρ1 + ρ2 + ρ3 + ρ4)

ηα1

Hence, the Salmonella population is bounded in the region

ΩCB
=
{
CB(t) ∈ R1

+ : Ns(t) ⩽
Λ(ρ1 + ρ2 + ρ3 + ρ4)

ηα1

}
considering the last equation of system (2.1),that is equation ten,we have;

dCV

dt
= ω1Eg + ω2Ig + ω3Egs + ω4Igs −α2CV . (3.12)

Upon reduction of equation (3.12), we have

dNg

dt
⩽

Λ(ω1 + ω2 + ω3 + ω4)
η

−α2Ng. (3.13)

By use of integrating factor we solve equation (3.13) to get

Ng ⩽
Λ(ω1 + ω2 + ω3 + ω4)

ηα2
+
(
Ng(0) −

Λ(ω1 + ω2 + ω3 + ω4)
ηα2

)
e−α2t (3.14)

Taking the limit of equation (3.14), as t tends to infinity, gives Ng ⩽ Λ(ω1+ω2+ω3+ω4)
ηα2

.
Thus the Gumboro population is bounded in the region

ΩCV
=
{
CV (t) ∈ R1

+ : Ng ⩽
Λ(ω1 + ω2 + ω3 + ω4)

ηα2

}
Since the birds population, Gumboro pathogen population and the Salmonella pathogen
population are bounded, then the model will be analysed in a suitable feasible region

Ω ={(S, Eg, Es, Egs, Is, Ig, Igs, R) ∈ R8
+; CB ∈ R+; CV ∈ R+; S > 0;

Eg, Es, Egs, Is, Ig, Igs, R, CB, CV ⩾ 0; Nc ⩽
Λ
η

;

Ng ⩽
Λ(ω1 + ω2 + ω3 + ω4)

ηα2
; Ns(t) ⩽

Λ(ρ1 + ρ2 + ρ3 + ρ4)
ηα1

}
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4. Optimal Control Problem

Optimization of disease prevention and control is one of the branches of Mathematical
modeling which helps in determining the effective strategies for disease prevention and
control. The model aims at minimizing the number of infections as well as the costs for
the control strategies. The objective function to be minimized is formulated as follows

J = min
u1,u2,u3,u4,u5,u6,u7

tf∫
t0

[a1Es(t) + a2Eg(t) + a3Egs(t) + a4Is(t) + a5Ig(t) + a6Igs(t)

+ a7CB(t) + a8CV (t) +
1
2

7∑
i=1

wiu
2
i]dt

where the coefficients a1, a2, a3, a4, a5, a6, a7, a8 and
7∑

i=1
wi are the constant weights.

The optimal control model is taken into consideration on the full-time horizon [t0, tf].
Therefore, the optimal control model’s solution is (u∗

1 , u
∗
2 , u

∗
3 , u

∗
4 , u

∗
5 , u

∗
6 , u

∗
7 ), in which

J(u∗
1 , u

∗
2 , u

∗
3 , u

∗
4 , u

∗
5 , u

∗
6 , u

∗
7 ) = min {J(u1, u2, u3, u4, u5, u6, u7)|u1, u2, u3, u4, u5, u6, u7 ∈ U}

Where U = {(u∗
1 , u

∗
2 , u

∗
3 , u

∗
4 , u

∗
5 , u

∗
6 , u

∗
7 )} such that u∗

1 , u
∗
2 , u

∗
3 , u

∗
4 , u

∗
5 , u

∗
6 , u

∗
7 are measur-

able with 0 ⩽ u∗
1 ⩽ 1, 0 ⩽ u∗

2 ⩽ 1, 0 ⩽ u∗
3 ⩽ 1, 0 ⩽ u∗

4 ⩽ 1, 0 ⩽ u∗
5 ⩽ 1, 0 ⩽ u∗

6 ⩽ 1,
0 ⩽ u∗

7 ⩽ 1 for t ∈ [0, tf ] is the control set.

5. The Hamiltonian and optimality system

By applying the Pontryagins Maximum Principle [24], the Hamiltonian (H), is defined
as:

H =a1Es(t) + a2Eg(t) + a3Egs(t) + a4Is(t) + a5Ig(t) + a6Igs(t) + a7CB(t) + a8CV (t)

+
1
2
w1u

2
1 +

1
2
w2u

2
2 +

1
2
w3u

2
3 +

1
2
w4u

2
4 +

1
2
w5u

2
5 +

1
2
w6u

2
6 +

1
2
w7u

2
7 + p1(t)

dS

dt

+ p2(t)
dEs

dt
+ p3(t)

dEg

dt
+ p4(t)

dEgs

dt
+ p5(t)

dIs

dt
+ p6(t)

dIg

dt
+ p7(t)

dIgs

dt

+ p8(t)
dR

dt
+ p9(t)

dCB

dt
+ p10(t)

dCV

dt

where p1(t), p2(t), p3(t), p4(t), p5(t), p6(t), p7(t), p8(t), p9(t), p10(t) are adjoint vari-
ables associated with the state variable S, Es, Eg, Egs, Is, Ig, Isg, R, CB, CV respectively.

Theorem 5.1. Given an optimal control set u1, u2, u3, u4, u5, u6, u7 that minimizes J over U ,
there exist adjoint variables, p1(t), p2(t), p3(t), p4(t), p5(t), p6(t), p7(t), p8(t), p9(t), p10(t)
satisfying
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dp1

dt
= −

∂H

∂S
;

dp6

dt
= −

∂H

∂Ig
;

dp2

dt
= −

∂H

∂Es
;

dp7

dt
= −

∂H

∂Igs
;

dp3

dt
= −

∂H

∂Eg
;

dp8

dt
= −

∂H

∂R
;

dp4

dt
= −

∂H

∂Egs
;

dp9

dt
= −

∂H

∂CB
;

dp5

dt
= −

∂H

∂Is
;

dp10

dt
= −

∂H

∂CV
;

(5.1)

and with transversality conditions pi(tf) = 0 where i = 1, 2, · · · , 10. Furthermore,

u1(t)∗ = max
{

0,min
{

1,
−γsSp1 + γsSp2 − γsEgp3 + γsEgp4 − ξγsIgp6 + ξγsIgp7

w1

}}
u2(t)∗ = max

{
0,min

{
1,

−γgSp1 + γgSp3 − γgEsp2 + γgEsp4 − ξγgIsp5 + ξγgIsp7

w2

}}
u3(t)∗ = max

{
0,min

{
1,

Esp2 − Egsp3 + Egsp4 + Isp5 − Igsp6 + Igsp7 − Esp8 − Isp8

w3

}}
u4(t)∗ = max

{
0,min

{
1,

Egp3 − Egsp2 + Egsp4 + Igp6 − Igsp5 + Igsp7 − Egp8 − Igp8

w4

}}
u5(t)∗ = max

{
0,min

{
1,

Egsp4 − Egsp8 + Igsp7 − Igsp8

w5

}}
u6(t)∗ = max

{
0,min

{
1,

CBp9

w6

}}
u7(t)∗ = max

{
0,min

{
1,

CVp10

w7

}}

Proof. Suppose U = {(u∗
1 , u

∗
2 , u

∗
3 , u

∗
4 , u

∗
5 , u

∗
6 , u

∗
7 )} is an optimal control and

S(t), Es(t), Eg(t), Egs(t), Is(t), Ig(t), Igs(t), R(t), CB(t), CV (t) are the corresponding
state solutions. Applying the Pontryagin’s Maximum Principle [24], there exist adjoint
variables satisfying:

dp1

dt
= −

∂H

∂S
= (1 − u1)γsp1 + (1 − u2)γgp1 + ηp1 − (1 − u1)γsp2 − (1 − u2)γgp3

dp2

dt
= −

∂H

∂Es
= −a1 + (1 − u2)γgp2 + (σs + u3)p2 + (ϕs + η + κ)p2 − (1 − u2)γgp4 −ϕsp5

−(σs + u3)p8 − ρ1p9
dp3

dt
= −

∂H

∂Eg
= −a2 + (1 − u1)γsp3 + (σg + u4)p3 + (ϕg + η + µ)p3 − (1 − u1)γsp4 −ϕgp6
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−(σg + u4)p8 −ω1p10

dp4

dt
= −

∂H

∂Egs
= −a3 − (πs + u3)p2 − (πg + u4)p3 + (πs + u3)p4 + (πg + u4)p4 + (σgs + u5)p4

+(ϕgs + η + µ + κ)p4 −ϕgsp7 − (σgs + u5)p8 − ρ3p9 −ω3p10

dp5

dt
= −

∂H

∂Is
= −a4 + ξ(1 − u2)γgp5 + (δs + u3)p5 − (η + κ)p5 − ξ(1 − u2)γgp7 − (δs + u3)p8

−ρ2p9
dp6

dt
= −

∂H

∂Ig
= −a5 + ξ(1 − u1)γsp6 + (δg + u4)p6 + (η + µ)p6 − ξ(1 − u1)γsp7 − (δg + u4)p8

−ω2p10
dp7

dt
= −

∂H

∂Igs
= −a6 + (θs + u3)p7 + (θg + u4)p7 + (δgs + u5)p7 + (η + µ + κ)p7 − (θs + u3)p6

−(θg + u4)p5 − (δgs + u5)p8 − ρ4p9 −ω4p10

dp8

dt
= −

∂H

∂R
= ηp8

dp9

dt
= −

∂H

∂CB
= −a7 + (α1 + u6)p9 +

(1 − u1)ρτ1

(τ1 + CB)2 (Sp1 − Sp2 + Egp3 − Egp4 + ξIgp7 − ξIgp8)

dp10

dt
= −

∂H

∂CV
= −a8 + (α2 + u7)p10 +

(1 − u2)ωτ2

(τ2 + CV )2 (Sp1 − Sp3 + Esp2 − Esp4 + ξIsp6 − ξIsp8)

(5.2)

with transversality conditions p1(tf) = p2(tf) = p3(tf) = p4(tf) = p5(tf) = p6(tf) = p7(tf) =
p8(tf) = p9(tf) = p10(tf) = 0. In a manner similar to that described in [24], we solve the
equation ∂H

∂ui
= 0 at ui for i = 1, 2, · · · , 7 to obtain the controls:

0 =
∂H

∂u1
= γsSp1 − γsSp2 + γsEgp3 − γsEgp4 + ξγsIgp6 − ξγsIgp7 + w1u1

0 =
∂H

∂u2
= γgSp1 − γgSp3 + γgEsp2 − γgEsp4 + ξγgIsp5 − ξγgIsp7 + w2u2

0 =
∂H

∂u3
= −Esp2 + Egsp3 − Egsp4 − Isp5 + Igsp6 − Igsp7 + Esp8 + Isp8 + w3u3

0 =
∂H

∂u4
= −Egp3 + Egsp2 − Egsp4 − Igp6 + Igsp5 − Igsp7 + Egp8 + Igp8 + w4u4

0 =
∂H

∂u5
= −Egsp4 + Egsp8 − Igsp7 + Igsp8 + w5u5

0 =
∂H

∂u6
= −CBp9 + w6u6

0 =
∂H

∂u7
= −CVp10 + w7u7

Therefore, we have

u1 =
−γsSp1 + γsSp2 − γsEgp3 + γsEgp4 − ξγsIgp6 + ξγsIgp7

w1
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u2 =
−γgSp1 + γgSp3 − γgEsp2 + γgEsp4 − ξγgIsp5 + ξγgIsp7

w2

u3 =
Esp2 − Egsp3 + Egsp4 + Isp5 − Igsp6 + Igsp7 − Esp8 − Isp8

w3

u4 =
Egp3 − Egsp2 + Egsp4 + Igp6 − Igsp5 + Igsp7 − Egp8 − Igp8

w4

u5 =
Egsp4 − Egsp8 + Igsp7 − Igsp8

w5

u6 =
CBp9

w6

u7 =
CVp10

w7

then

u1(t)∗ = max
{

0,min
{

1,
−γsSp1 + γsSp2 − γsEgp3 + γsEgp4 − ξγsIgp6 + ξγsIgp7

w1

}}
u2(t)∗ = max

{
0,min

{
1,

−γgSp1 + γgSp3 − γgEsp2 + γgEsp4 − ξγgIsp5 + ξγgIsp7

w2

}}
u3(t)∗ = max

{
0,min

{
1,

Esp2 − Egsp3 + Egsp4 + Isp5 − Igsp6 + Igsp7 − Esp8 − Isp8

w3

}}
u4(t)∗ = max

{
0,min

{
1,

Egp3 − Egsp2 + Egsp4 + Igp6 − Igsp5 + Igsp7 − Egp8 − Igp8

w4

}}
u5(t)∗ = max

{
0,min

{
1,

Egsp4 − Egsp8 + Igsp7 − Igsp8

w5

}}
u6(t)∗ = max

{
0,min

{
1,

CBp9

w6

}}
u7(t)∗ = max

{
0,min

{
1,

CVp10

w7

}}
(5.3)

6. Numerical Simulation Results

Finding the solutions of the optimality system analytically is sometimes impossible
which leads to the employment of the numerical methods in the approximation of the
solutions and the displaying of the results. The optimality system contains the state system
(2.1), the adjoint system (5.2), control characterization (5.3) and corresponding initial
conditions and it is solved using the fourth-order runge kutta iteration method to so as to
produce the simulation results shown in this section. The state and adjoint equations are
solved using the fourth-order Runge Kutta algorithms. The parameter values in Table 1
are used.
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Table 1: Parameter description

Parameter Value Source
Λ 10/day [17]
ω 0.000143/day [17]
τ1 0.009/day Assumed
ρ 0.01/day [20]
τ2 0.009/day Assumed
η 0.000143/day [17]
µ 0.032143/day [17]
κ 0.091/day Assumed
ω1 0.008/day Assumed
ω2 0.009/day Assumed
ω3 0.0091/day Assumed
ω4 0.0092/day Assumed
α2 0.0900982/day Assumed
ρ1 0.03/day [20]
ρ2 0.1/day [20]
ρ3 0.00811/day Assumed
ρ4 0.1/day Assumed
α1 0.1/day [20]
ξ 0.009/day Assumed
πs 0.009/day Assumed
πg 0.009/day Assumed
θs 0.0039/day Assumed
θg 0.0039/day Assumed
σs 0.01/day Assumed
σg 0.0165 /day [18]
σgs 0.01/day Assumed
δs 0.0048/day [20]
δg 0.021429/day [17]
δgs 0.0052/day Assumed
ϕs 0.5 /day [20]
ϕg 0.033/day [18]
ϕgs 0.1/day Assumed

In the simulation process, the following control strategies were employed to determine
the effective control strategy for Gumboro-Salmonellosis co-infection.

i) Strategy I: Vaccination only
Here, chickens are vaccinated against Salmonella and Gumboro diseases (u1 and
u2 ̸= 0, u3 = u4 = u5 = u6 = u7 = 0).
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ii) Strategy II: Supportive measures
Here the supportive measures that help in the recovery of the birds at both early and
later stages of infections are used (u3, u4 and u5 ̸= 0, u1 = u2 = u6 = u7 = 0).

iii) Strategy III: Environmental sanitation only
Here the environmental strategies to eliminate the Salmonella bacteria and Gum-
boro virus in the environment are employed (u6 = u7 ̸= 0, u1 = u2 = u3 = u4 = u5 =
0).

iv) Strategy IV: Vaccination and Supportive Measures.
Vaccination of the birds and the Supportive measures are employed in this stage
(u1, u2, u3, u4 and u5 ̸= 0, u6 = u7 = 0).

v) Strategy V: Vaccination and Environmental Sanitation
Here vaccination of chicken and environmental sanitation control measures are em-
ployed (u1, u2, u6 and u7 ̸= 0, u3 = u4 = u5 = 0.

vi) Strategy VI: Supportive measures and Environmental sanitation
Here supportive measures and environmental sanitation strategies are employed.(u1 =
u2 = 0, u3, u4, u5, u6 and u7 ̸= 0.

vii) Strategy VII: Vaccination, Supportive Measures and Environmental Sanitation
Here all the control strategies are employed (u1 = u2 = u3 = u4 = u5 = u6 = u7 ̸= 0).

6.1. Numerical results and discussion
6.1.1. Control Strategy I-vaccination of birds against Salmonella and Gumboro (u1,u2)

In this strategy vaccination of birds against salmonellosis u1 and vaccination of birds
against Gumboro u2 are used to optimize the objective function J while the other con-
trol strategies , that is (u3, u4, u5, u6, u7) are set at zero. The simulation results of the
infected, co-infected, and pathogen compartments when the vaccination strategy is imple-
mented are illustrated in Figure 2 below.

From Figures 2(a), 2(b), 2(c) and 2(d), it’s shown that whenever birds are vacci-
nated against salmonella and gumboro diseases the solution curves for birds at early of
Salmonella infection Es, birds at early Gumboro infection Eg, birds at early stages of
Salmonella-Gumboro co-infection Egs and birds at acute stage of salmonella infection Is,
converges to zero implying that vaccination has a positive impact in controlling bird infec-
tions in Es, Eg and Egs. Figure 2(f) shows no significant impact of the control strategy at
acute stages of Gumboro-Salmonella co-infections as the solution curves with and without
control converge to zero an observation that can be related to the increased death rates at
this stage. From 2(e), 2(g), and 2(h) it is observed that birds at acute stages of Gumboro
infection Ig, salmonella pathogens CB, and Gumboro pathogens CV increase with control
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Figure 2: Effects of Strategy I on the dynamics of the co-infection optimal control model

though at a slower rate than without control probably because no other strategies are em-
ployed to curb shedding of pathogens to the environment and thus vaccination strategy
alone is not an effective strategy in controlling the salmonella -Gumboro co-infection

6.2. Control Strategy II
Here the simulation results are illustrated to show the impact of implementing sup-

portive measures control strategy only on infection, co-infection, and pathogen classes
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Figure 3: Effects of Strategy II on the dynamics of the co-infection optimal control model

(See Figure 3) From figures 3(a), 3(b), and 3(d), it is observed that birds in Es, Eg and
Is decreases then increases with control probably because birds aren’t immune and their
environment is contaminated. Figure 3(e), birds at Ig initially increase then decrease,
and then increase. From Figure 3(c) and Figure 3(f) birds at early stage of Gumboro-
Salmonella co-infection Egs and birds at acute stages Gumboro-Salmonlla co-infection Igs
decreases sharply and then converges to zero with control hence the control strategy is ef-
fective for birds at Egs and Igs. From Figure 3(g) and Figure 3(h) the solution curves for
CB and CV with control are seen to increase though at a lower rate than without control
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probably because birds atEs,Eg,Isand Ig still sheds pathogens Which renders this strategy
ineffective.

6.3. Control Strategy III
Figure 4 illustrates the simulation results whenever the environmental sanitation-only

control strategy is implemented on the infection, co-infection and pathogen classes. From
Figure 4(a), 4(b), 4(c),4(d),4(e) and 4(f) it is observed that the control strategy has no
impact on birds at Es,Eg,Egs,Is,Igand Igs as the solution curves with and without control
are same however in figures 4(c) and 4(f) the solution curves with and without control for
birds at Egs and Igs assumes a down tragectory probably due increased death rates again,
From Figure 4(g) and Figure 4(h) it observed that the salmonella pathogen and Gumboro
pathogen decrease initially and then rise. This can be associated to the fact that chickens
at Es,Eg,Is, and Ig keep on shedding pathogens to the environment hence the control is
ineffective in preventing and controlling the Gumboro-Salmonella co-infection.

6.4. Control Strategy IV
Figure 5 illustrates the simulation results whenever vaccination and supportive mea-

sures control strategies are implemented on the infected,co-infection, and the pathogen
concentration in the environment. From figure 5(a), 5(b), 5(c), 5(d), and 5(f) it is shown
that birds in Es, Eg, Egs, Is, Igs converges to zero with controls. From Figure 5(g) and
5(h), it is observed that the CB and CV increases initially and then decreases.Probably
because of the reduced shedding from ineffective birds. however, 5(e) shows an increase
followed by a decrease then an increase of birds at Ig hence the inefficiency of the control
strategy.

6.5. Control Strategy V
Figure 6 illustrates the simulation results whenever vaccination and environment san-

itation control strategies are implemented on the infection, co-infection, and pathogen
concentration in the environment. From the Figures 6(a), 6(b), 6(c) it is observed that
the solution curves for birds at Es, Eg and Egs converges to zero,while from figure 6(d),
the birds at Is are seen to increase and decrease with controls. From figure 6(f) it is ob-
served that vaccination combined with environmental sanitation has no impact on birds at
Igs and therefore, the decrease of chicken at this stage with and without control might be
as a result of mortality cases experienced at this stage. Figure 6(e), shows that the solution
curves for birds at Ig increase though at a lower rate with controls than without controls
and also from figures 6(g) and 6(h) a decrease followed by an increase is observed in
Salmonella CBand Gumboro pathogenCV with controls probably because of shedding by
birds at infective classes declaring this control ineffective.

6.6. Control Strategy VI
Figure 7 illustrates the simulation results whenever supportive measures and environ-

mental sanitation control strategies are implemented on the infection, co-infection, and
pathogen environment concentration. Figures 7(a), 7(b), 7(d), 7 (g) and 7 (h) show that
the birds at Es, Eg, Is, and CB and CV initially decrease then rise with control and also
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Figure 4: Effects of Strategy III on the dynamics of the co-infection optimal control model
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Figure 5: Effects of Strategy IV on the dynamics of the co-infection optimal control model

from Figure7(e) shows an initial increase followed by a decrease and then an increase for
Ig.Results that can be associated to the fact that the birds are not immuned to diseases.
Hence, rendering the strategy ineffective although from 7(c) and 7(f) the strategy seems
effective as Egs and Igs converges to zero.

6.7. Control Strategy VII
Figure 8 illustrates the simulation results whenever all control strategies that is vac-

cination, supportive measures, and environmental sanitation control strategies are im-
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Figure 6: Effects of Strategy V on the dynamics of the co-infection optimal control model

plemented on the infection,co-infection, and pathogen environment concentration. From
figure 8(a), 8(b), 8(c), 8(d), 8(f), 8(g), 8(h) it is observed that birds at Es, Eg, Egs, Is,
Ig, Igs together with CB, CV converges to zero with controls, also figure 8(e) indicates a
initial increase then decrease of birds at Ig with controls which qualifies this strategy as
the most effective in prevention and control of Gumboro-Salmonella co-infection.
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Figure 7: Effects of Strategy VI on the dynamics of the co-infection optimal control model

7. Conclusion

A Gumboro-Salmonella co-infection mathematical model with vaccination of birds
against gumboro diseases, vaccination of birds against salmonella disease, treatment of
birds with Gumboro infections, Salmonella infections, and Gumboro-salmonella co-infection
by use of supportive measures, elimination of Gumboro virus from the environment and
elimination of salmonella bacteria from the environment was developed in this paper. The
model’s solution set is positive and bounded as revealed by the model’s qualitative ex-
amination. Pontryagin’s maximum principle was used to formulate the optimal control
problem and the optimal control condition was analyzed. The optimality system is de-
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Figure 8: Effects of Strategy VII on the dynamics of the co-infection optimal control model

veloped and the optimal control requirement existence identified seven (7) strategies for
elimination of Gumboro-Salmonella co-infection are recommended and the effectiveness
of each strategy is carefully examined. A numerical examination of the recommended
strategies was used and the results graphically presented. From the results, it was realized
prevention and control of Gumboro-salmonella co-infection is possible only by combining
all the strategies.
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