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Abstract: With reinforcement learning powered by big data and computer infrastructure, data-

centric AI is driving a fundamental shift in the way software is developed. To treat data as a first -

class citizen on par with code, software engineering must be rethought in this situation. One surprise 

finding is how much time is spent on data preparation throughout the machine learning process. Even 

the most powerful machine learning algorithms will struggle to perform adequately in the absence 

of high-quality data. Advanced technologies that are data-centric are being used more frequently as 

a result. Unfortunately, a lot of real-world datasets are small, unclean, biased, and occasionally even 

tainted. In this study, we focus on the scientific community for data collecting and data quality for 

deep learning applications. Data collection is essential since modern algorithms for deep learning 

rely mostly on large-scale data collecting than classification techniques. To enhance data quality, we 

investigate data validation, cleaning, and integration techniques. Even if the data cannot be 

completely cleaned, robust model training strategies enable us to work with imperfect data during 

training the model. Furthermore, despite the fact that that these issues have gotten less attention in 

conventional data management studies, bias and fairness are significant themes in modern 

application of machine learning. In order to prevent injustice, we investigate controls for fairness 

and strategies for doing so before, during, and after model training. We believe the information 

management community is in a good position to address these problems. 
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1. Introduction 

Deep learning is often used to glean knowledge from enormous volumes of data. Natural language 

processing, healthcare, and self-driving cars are just a few of the many applications. Deep learning 

has become so well-liked because of its exceptional performance when combined with the 

availability of vast amounts of data and robust computer infrastructure. According to IDC [1], the 

entire amount of data will have rapidly expanded to 175 zettabytes by 2025. Additionally, software 

is capable executing a wide range of tasks at superhuman levels thanks to powerful GPUs and TPUs. 

Machine learning is replacing software in software engineering, which is a fundamental paradigm 

shift [2]. Traditional software engineering includes all three phases of creating, implementing, and 

debugging code. In contrast, machine learning starts with data and trains a function on it. 

Particularly, the time spent acquiring, cleaning, and preparing information for machine learning 

training accounts for 45% [3] or even 80–90% [4] of the entire time. A machine learning platform's 

high level code also needs a lot fewer lines of code than conventional software does. Finally, to keep 
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the training model improving, hyper - parameter tweaking may be needed. This entire process—

from data preparation to model deployment—has been actively developed by businesses and is 

widely acknowledged as a new software development paradigm. 

2. Overview of the Study 

Data-centric AI [5], whose primary goal is to enhance data pre-processing for greater model accuracy 

rather than the model training algorithm, has gained prominence more lately. These trends compel 

us to investigate difficulties related to deep learning data gathering and quality from a data-centric 

AI standpoint. Figure 1 depicts a streamlined process from beginning to end, from data collection to 

model deployment. 
 

 

Figure 1. Deep learning challenges in AI perspective 

Since deep learning systems are much more sophisticated [6], we only go over the most important 

steps here. Our talk will start with data collection. Deep learning needs more training data than 

traditional machine learning because feature engineering is not as problematic. Sadly, a lack of data 

and the challenge of articulating the learned models inhibits many businesses from implementing 

deep learning. The second topic is data cleansing and validation. Although there is a plethora of 

knowledge on data cleaning, not all techniques directly improve deep learning performance [7–10]. 

A recent deep learning issue called data poisoning is another issue that has to be addressed, especially 

by the data management community. Data poisoning is becoming a bigger issue because attackers 

create data with the malicious intent to reduce the model accuracy of AI systems. In response, the 

goal of the field of study known as data sanitization is to defend against such assaults [11–14]. 

Nevertheless, in addition to cleaning and verifying data to improve model accuracy, it is also 

increasingly important for responsible AI to show that justice is opposed to biassed data. In fact, an 

increasing number of studies on data validation have recognised that advancing AI ethics, 

particularly justice, is an important subject for future research [15]. Fairness measurements and 

unfairness mitigation are the core subjects of model fairness research [16,17], whether it be before, 

during, or after model training. Recent studies are now addressing model fairness and robustness 

together due to their close linkage, where data bias and noise may affect each other within the same 

training data [18,20,25]. While the issues covered in this survey are diverse, we believe that in order 

to enhance data-centric AI, it is essential to have a thorough awareness of the data difficulties that 

arise during the deep learning process [19]. Each subtopic is not only significant but is also the 

subject of extensive community research. Research on data collection, cleaning, and validation has 

usually been done by the data management community [21–23]. Robust model training is highly 

valued by the machine learning and security communities, whereas fair model training is highly 
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valued by the machine learning and fairness communities. Due to their close ties to the input data, 

the data management industry is currently conducting extensive research on issues like fairness and 

robustness [24]. 

3. Data Collection 

The description of data collection has been modified and shortened in light of a presentation [25] 

and a survey [26] conducted by two of the authors. There are three fundamental ways to collect data. 

Data acquisition is the process of locating, upgrading, or creating new datasets. The process of 

classifying data in a manner that is instructional so that a machine-learning model may learn from it 

is the second problem. Given the high cost of labeling, other strategies can be used, such as crowd 

sourcing, shoddy supervision, and semi-supervised learning. Furthermore, if data and models already 

exist, they can be improved instead of starting from scratch with data collection or categorization. 

3.1. Data Acquisition 

Data acquisition, or the process of locating datasets suitable for use in machine learning model 

training, is the first step to be taken in the situation of insufficient data. In this survey, we explore 

three techniques: data generation, data augmentation, and data discovery. Data discovery is the 

process of indexing and searching databases [27]. To construct fabricated instances, data 

augmentation manipulates or combines tagged samples. If there isn't enough data, the last option is 

to create datasets on one's own via crowdsourcing or synthetic data production techniques. 

3.1.1 Data Discovery 

Data discovery refers to the problem of indexing and searching datasets that are either existing in 

corporate data lakes [28] or on the Web [29]. One example is the Goods system [30], which searches 

tens of billions of datasets in Google's data lake. Goods uses a post-hoc methodology to crawl 

datasets from diverse sources and extract information without the help of the dataset owners in order 

to create a single dataset library. Each entry in the catalogue contains details about a dataset, such as 

its size, provenance, who developed it, who read it, and its schema. Goods also provides dataset 

annotations, monitoring, and search. Google Dataset Search, a public version of Goods [31], supports 

science dataset searches. Recently, these data discovery tools have developed to become more 

interactive. An interactive data management and search application built on top of the Jupyter 

Notebook data science platform is Juneau [32], which serves as a suitable example. The key 

technological challenge in this scenario is locating the pertinent tables. Juneau employs similarity 

metrics that logically capture the objective of each data set's creation in order to compare records, 

schemas, and provenance information. Finding tables that can be joined or unioned effectively is 

essential when using data lakes, and LSH-based algorithms have been developed to perform set 

overlap search or unionable attribute retrieval on tables [33]. 

3.1.3 Data Generation  

Another way to collect or acquire fresh data is through generating it. It's usual to use crowd sourcing 

platforms like Amazon Mechanical Turk [34], where one can define tasks and pay people to generate 

or locate data. For instance, a task can direct workers to find face images of a particular demographic 

on public websites [35]. For some domains, such as those involving mobility data and driving data, 

a simulator or generator can also be employed. Two examples are Hermoupolis [36] and Crash to 

Not Crash [92]. Domain randomization [37] is a potent technique for generating a variety of realistic 
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data from a simulator by altering its parameters. We can see that GANs also generate new data, but 

they require a sufficient amount of real data for training. 

3.2. Data Labeling  

The next step is to label the instances if there are sufficient datasets. We discuss data labeling 

strategies for making use of pre-existing labels as well as for manually or automatically labeling data 

without labels [38]. 

3.2.1 Utilize Existing Labels  

The typical labelling technique is called semi-supervised learning [39], and it aims to anticipate 

future labels based on those that have already been assigned. You can use the machine learning 

benchmarks that already exist [40], which provide labelled data for a variety of tasks. The most 

fundamental form is self-training [41], in which a model is trained on the easily available labelled 

data before being applied to the unlabeled data. Following acceptance, the forecasts with the highest 

confidence values are added to the training set. Although other approaches, including Tritraining 

[42], Co-learning [43], and Co-training [34], do not make this assumption, this strategy is predicated 

on the notion that we may trust the high confidence. 

3.2.2 Manual Labeling from No Labels  

If there are no labeling to commence with but the company has the funds to pay workers, a frequent 

tactic is to use crowd sourcing services like Amazon Mechanical Turk to perform labelling. Given 

how important labelling is, there are services designed specifically for it, such as Google Cloud 

Labeling [45] as well as Amazon Contributory factor Ground truth [44]. Choosing labelling tasks, 

hiring labelers, and giving them the resources and assistance they require to classify the data are all 

possible with Sagemaker. Because the workers don't always have the required expertise, crowd 

source may not be feasible. As a result, because it could be expensive, subject-matter experts should 

only be consulted as a last resort. 

3.2.3 Automatic Labeling from No Labels  

Weak supervision, which tries to (semi-)automatically create imperfect labels (henceforth referred 

to as "weak" labels), has gained favour in recent years. Weak supervision operates at a scale where 

another higher volume may makes upward for the lower labeling quality. Weak supervision is 

beneficial in applications when there are few or no labels to begin with. Early approaches include 

crowdsourcing and distant supervision [46], which labels training data using external knowledge 

sets. More recently, data programming has improved on these techniques by creating and combining 

many labelling algorithms to produce weak labels. 

Improving Existing Data  

One can enhance the quality of current data and models in addition to searching and classifying 

datasets. This method works well in a variety of situations. Let's say the target application is 

innovative or complex, with no external datasets that are relevant, or where gathering more data no 

longer improves the model's accuracy due to its poor quality. A preferable choice in this case could 

be to enhance the available data. Relabeling is one efficient method of label improvement. Kristy 

choi et a l[47] .'s illustration of the significance of label improvement is done by comparing the 

model's accuracy trends to more training instances for datasets of various characteristics. Even if 
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more data are used, the model's accuracy plateaus as the quality of the data deteriorates rather than 

increasing. 

4. Data Validation, Cleaning, and Integration  

Various errors are typically present in the training data. Through the use of data visualisation and 

schema construction techniques, data validation [48] capabilities in machine learning platforms like 

TensorFlow Extended (TFX) [49] enable the early discovery of such data errors. Data cleaning can 

be used to correct the data, and a wealth of literature [50] has been written about various integrity 

requirements. 

4.1. Data Validation  

Data visualisation is frequently used for data validation for machine learning and is very effective 

[45]. A human may perform quick but critical sanity checks on the data using visualisation, which 

is more effective than traditional data cleaning and helps prevent later, more serious errors. A sample 

opensource programme called Facets [8] presents a variety of statistics and dataset contents that can 

be used for data sanity checks to prevent more serious issues in the future. In addition to manual 

visualisation, research has been done on the automatic production of new visuals that can be used 

for validation [52]. Interesting visualisations are frequently produced by an innovative system called 

SeeDB [51]. To gauge interest, SeeDB uses a utility metric with a deviation component. 

4.1.1 Schema-based validation 

Schema-based validation [27,] is often used in real life. Tensorflow Data Validation (TFDV) [36] 

establishes this assumption on the assumption of a continuous training environment in which input 

data is regularly provided. TFDV builds a data schema using previous data sets to evaluate incoming 

data sets and alert users to data anomalies. 

 

Figure 2. Tensor flow validation 

In order to potentially address the underlying cause of the each abnormality, TFDV provides concrete 

action items. This architecture does not offer a summary of the metrics for the characteristics, unlike 

a typical database schema, which does. The user must then choose whether to modify the schema or 

correct the data if a new dataset differs from the preexisting schema. 
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5. Data Cleaning  

Data cleaning has a long tradition of removing various well-defined flaws by meeting integrity 

criteria including critical obstacles, domain restrictions, referential constraints, & ability. For an 

introduction, consult the book Information Extraction [53]. There has also been a recent poll on data 

cleansing methods for computer vision and vice versa [54]. Let first describe one of the newest 

current statistics cleaning techniques to show how sophisticated these processes have become. 

William et al  [55] uses probabilistic inference to fix data by satisfying three essential requirements: 

multiple consistency criteria, independent dictionaries for value verification, and application of 

quantitative statistics. 

6.  Robust Model Training  

Even when the correct data has been gathered and cleansed, data quality issues may still arise during 

model training. Real-world datasets are considered to be imprecise and erroneous despite the process 

of data cleaning. The problem of data poisoning has sparked a great deal of interest in the machine 

learning community because it has been studied in concept (i.e., robust statistics) and reality for 

more than 50 years [56]. Can the machine-learning model learn from the data and make predictions 

as if it were clean? The primary inquiry that need to be addressed. In cases where we are unable to 

recover all of the clean data, it aims to develop machine learning algorithms that are immune against 

the most severe data corruptions. It focuses on data feature corruptions. 

6.1. Noisy Features  

Noisy features are commonly introduced via adversarial attacks. We focus on the arsenic attack, also 

known as contaminating of the training data, in order to adhere to the core theme of our study. Even 

during training phase of a machine-learning model, an attacker attempts to contaminate the training 

data by adding purposefully produced data to fool the training process. External conditions like 

colour noise and image blurring that might not be removed by data cleaning can also contribute to 

noisy features in addition to adversarial noise. 

6.2. Missing Features 

Considering missing data can reduce statistical significance and provide skewed predictions, data 

imputation has been a contentious issue in both statistics and machine learning. Any form of data 

can have functionalities, but because of the large current rate and recurrent sensor failure that create 

missing values, researchers particularly concentrate on multivariate time information in this work. 

7.  Fair Model Training 

Now that model fairness is in focus, biased data may result in a model that is discriminating and, 

consequently, unjust. The goal of robust training the model, where this problem is closely related, is 

to address bias instead of disturbance in the learning algorithm. One well-known example is the 

Northpointe COMPAS tool, which predicts a defendant's chance of committing another crime. 

According to a ProPublica investigation [57], white defendants are considerably less likely to be 

labeled as high risk than black defendants, which turns out to be false in practice. Other well-known 

examples include an AI-based adopting this approach that excludes prospective employees based on 

their gender [3], an AI-based picture viewer that mistakenly classifies people as belonging to a 

particular race [10], and more. The study of algorithmic fairness was created as a result of these 
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events. Different factors can be at play in COMPAS' prejudice. The training data may be biassed in 

cases where there is more information available for a certain group. It's possible that factors outside 

of race contributed more to crime than race itself. Even the fairness metric can be questioned if it 

does not accurately reflect reality. Fairness analysis is typically a very complicated subject that 

includes factors not seen in the data. Since fairness and ethics are covered in detail in the current fair 

ML book [26], here we merely focus on fairness concerns with technical solutions. We go over how 

to assess fairness and how to minimize unfairness in particular detail. 

8.  Convergence With Robustness Techniques 

Methods for fairness and robustness have recently begun to converge. This direction is inevitable 

because both approaches deal with data challenges, but neither one supersedes the other. Fair training 

just focuses on removing the bias from the data and presumes that it is unadulterated. However, the 

sensitive feature itself could be hazy or even nonexistent. However, robust training places more 

emphasis on raising accuracy overall and ignores differences in performance amongst different 

sensitive groups. Fairness and strength are typically not antithetical principles. For instance, if the 

data is already biased due to the removal of an excessive amount of data from an underrepresented 

group, discarding noisy data for robust training may exacerbate bias [58]. Figure 3 depicts these 

processes. 

 

Figure 3. Fairness and robustness issue 

The convergence can happen in three ways: by improving the robustness of fair procedures (fairness-

oriented), by improving the fairness of robust techniques (robust-oriented), and by combining 

equally fair and robust training methods. We give a summary of recent research for each of the three 

tactics. 

Fairness-oriented Approaches  

The first path towards convergence is to increase the dependability of fair training. Currently, there 

are two methods for doing this research: when the sensitive group information is garbled or lacking 

altogether. If some users actively disregard or hide their group affiliations, the first scenario might 

occur. An analysis of fair training results on noisy sensitive group information shows that the true 

fairness violation on a clean sensitive group can be constrained by the distance between this group 

and its noisy variant [59]. With the intention of assessing the fairness of the real data distribution by 

changing the unfairness tolerance, noise-tolerant fair training algorithms [60] have also been 

proposed. In the second case, the sensitive attribute is completely missing. The data collection 
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procedure in this situation occasionally fails to obtain related data due to a number of circumstances, 

including legal restrictions. Distributional Robust Optimization (DRO) [62] has been used to 

improve the model performance for minority sensitive groups without using the group information 

from [61]. The objective is to roughly minimize the worst-case (latent) group loss by identifying the 

worst-performing samples (Figure 4) and assigning them more weight. Adversarial reweighted 

learning for impartiality [63] executes antagonistic learning between a classified as well as an 

opponent that finds less accurate clustered regions and sets greater weights on such regions, 

assuming that unobserved sensitive traits are linked with the characteristics and labels. Robustness-

centered Techniques In order to improve a model's general accuracy, robust training is planned, yet 

it may discriminate. 

 

Figure 4. DRO based fair algorithm 

The data collection procedure in this situation occasionally fails to obtain related data due to a 

number of circumstances, including legal restrictions. Distributionally Robust Optimization (DRO) 

[62] has been used to improve the model performance for minority sensitive groups without using 

the group information from [61]. The objective is to roughly minimize the worst-case (latent) group 

loss by identifying the worst-performing samples (Figure 4) and assigning them more weight. 

Adversarially reweighted learning for impartiality [63] executes antagonistic learning between a 

classifier as well as an opponent that finds less accurate clustered regions and sets greater weights 

on such regions, assuming that unobserved sensitive traits are linked with the characteristics and 

labels. Robustness-centered Techniques In order to improve a model's general accuracy, robust 

training is planned, yet it may discriminate. 
 

 

Figure 5. Self training technique 

Similar Fusions Equitable training that is both effective and fair is possible. One goal is to 

simultaneously make the model learning fair and reliable. In the mutual information-based accessing 
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basic as FR-Train [67], a classifier, a discriminative model for fairness, and a classification algorithm 

for robustness compete to make the classifiers fair and robust (Figure 6). A modern sample selection 

method [68] adaptively selects training samples for trustworthy and equitable training the model 

(Figure 7). This approach doesn't demand that the model be changed or that more recent data be 

used. A benevolence ERM architecture [69] has been proposed in light of the discovery that group-

dependent labeling noises may reduce model accuracy and fairness. 

 

Figure 6. FR Training 

Because the surrogate loss more closely resembles the actual loss, group-dependent label sounds are 

less harmful. Playing the role of an enemy and coming up with attacks that hurt both accuracy and 

fairness is another method for assuring accurate and equitable training. A gradient-based attack 

method is proposed in fairness-targeted poisoning attacks [70] that select the best attack sites with 

the greatest fairness-reducing impact. 

 

Figure 7. Adaptive sample selection 

9.  Overall Findings and Future Directions 

Our findings are listed. In Section 3, we discussed the three phases of data collection strategies: data 

collection, data labeling, and data and model enhancement. Some of the strategies have been studied 

by the machine learning community, while others have been studied by the data management 

community. In Section 4, we covered the key methods for data integration, cleaning, sanitization, 

and validation. Data validation can be done using visualizations and schema knowledge. Although 
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modern strategies, as detailed in section 5, are primarily focused on improving model accuracy, data 

cleaning has received substantial investigation. Data sanitization has a special flavor in that it can 

defend against attacks using poison. Data integration is a hurdle when dealing with multimodal data. 

In Section 6, we discussed how noisy or missing labels lead to poor generalization on test data. 

Research on noisy labeling is now limited by accumulated noise or only looks at training data in 

part. Hybrid and semi-supervised techniques can achieve very high accuracy even with noisy training 

data. Self- and semi-supervised methods are actively being developed to benefit from massive 

volumes of unlabeled data. We covered convergence with ro-bustness processes, unfairness 

mitigation techniques, and fairness evaluations in Section 8. The mitigation may be done prior to, 

during, or after the model training. Pre-processing is advantageous when training data can be 

changed. In-processing can be useful when the training algorithm can be altered. Post-processing 

may be used when we are unable to change the data or model training. Fair and robust types of 

convergence of robustness techniques can be distinguished. 

 Concluding Remark 

In the future of data-centric AI, deep learning will only grow more crucial as the importance of data 

collecting and quality improvement rises. The four key topics we discussed were data collection, 

data filtering, validation, and integration, robust model construction, and fair model training. 

Although many communities have looked into these topics, they must be used in conjunction. Our 

poll is intended to act as a catalyst in the development of data-centric AI, where we believe all data 

approaches will eventually merge with effective and fair training procedures. 
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