Investigation of the solution of incomplete fractional integrals and derivatives associated with an incomplete Mittag-Leffler function

https://doi.org/10.48185/jfcns.v3i2.656

Authors

Keywords:

Incomplete Mittag-Leer function,, Incomplete Wright Function, Incomplete Fractional Fractional Integrals, Incomplete Fractional Derivatives, Hypergeometric function.

Abstract

This paper is based upon incomplete fractional calculus and with the help of this, derived the fractional
calculus formula for the incomplete Mittag-Leffler function. The results obtained are found in the form of
incomplete Wright function and hypergeometric function.

References

A. Wiman, Uber den fundamental satz in der theorie der funcktionen Ex, Acta Mathematica,

vol. 29, pp. 191201, 1905.

A. Wiman, Uber die Nullstellun der Funktionen Ex, Acta Mathematica, vol. 29, pp.

,1905.

A. A. Kilbas, M. Saigo, and R. K. Saxena, Generalized Mittag-Leer function and generalized

fractional calculus operators, Integral Transforms and Special Functions, vol. 15, no. 1, pp.

, 2004.

A. A. Kilbas, Fractional calculus of generalizedWright function, Fractional calculus and applied

analysis, 8(2), 113-126, 2005.

A.A. Kilbas, M. Saigo, and J. Trujillo, On the generalizedWright function", Fractional Calculus

and Applied Analysis, 4:437-460, 2002.

Dharmendra Kumar Singh and Saurabh Porwal, Incomplete Mittag-Leer function, Acta

Universitatis Apulensis, vol 34, p. 151-162, 2013.

Dharmendra Kumar Singh, Incomplete Fractional Calculus Operators, Progress in Fractional

Di erentiation and Applications, 7, No. 3, 191-202 (2021).

E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. London

Math. Soc. 10, 287-293, 1935.

E.M. Wright, The generalized Bessel function of order greater than one, Quarterly Journal of

Mathematics, 11(1):48, 1940.

G. M. Mittag-Leer, Une generalisation de lintegrale de Laplace-Abel, Comptes Rendus

delAcademie des Sciences S erie II , vol. 137, pp. 537539, 1903.

G. M. Mittag-Leer, Sur la nouvelle fonction Ex, Comptes Rendus de lAcademie des Sciences

, vol.137, pp. 554558, 1903.

H. J. Haubold, A. M. Mathai, and R. K. Saxena, Mittag-Leer Functions and Their

Applications, Hindawi Publishing Corporation Journal of Applied Mathematics, Volume 2011.

H. M. Srivastava, M. Aslam Chaudhry and Ravi P. Agarwal, The incomplete Pochhammer

symbols and their applications to hypergeometric and related functions, Integral Trans. Spec.

Funct., 23(9) (2012), 659-683.

I. S. Gupta and L. Debnath, Some properties of the Mittag-Leer functions, Integral

Transforms and Special Functions, vol. 18, no. 5, pp. 329336, 2007.

I. Podlubny, Fractional Di erential Equations, Academic Press, New York, NY, USA, 1999.

Incomplete Fractional Calculus

M. Saigo, A remark on integral operators involving the Gauss hypergeometric functon, Math.

Rep. College General Ed, Kyushu Univ., 11:135-143,i 1978.

M. Saigo and N. Maeda, More generalization of fractional calculus, Transform methods and

special function, Varna Bulgaria, pages 386-400, 1996.

R. K. Saxena, Certain properties of generalized Mittag-Leer function, in Proceedings of the

rd Annual Conference of the Society for Special Functions and Their Applications, pp. 7781,

Chennai, India, 2002.

R. Goren

o and F. Mainardi, Fractional oscillations and Mittag-Leer functions, Tech. Rep.

-14/96, Free University of Berlin, Berlin, Germany, 1996.

R. K. Saxena, S. L. Kalla, and V. S. Kiryakova, Relations connecting multi-index Mittag-Leer

functions and Riemann-Liouville fractional calculus, Algebras, Groups and Geometries, vol. 20,

pp. 363385, 2003.

R. Goren

o, J. Loutschko, and Y. Luchko, Computation of the Mittag-Leer function and its

derivatives, Fractional Calculus and Applied Analysis, vol. 5, no. 4, pp. 491518, 2002.

S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory

and Applications, Gordon and Breach, New York, NY, USA, 1993.

S. Samko, A. A. Kilbas, O. I. Marichev, Fractional integral and derivatives, Theory and

Applications, Gordon and Beach, Sci. Publ., New York, 1993.

T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leer function in the

kernel, Yokohama Mathematical Journal, vol. 19, pp. 715, 1971.

V. S. Kiryakova, A brief story about the operators of the generalized fractional calculus,

Fractional calculus and applied analysis, 11(2), 203- 220, 2008.

Published

2022-12-30

How to Cite

Singh, D. (2022). Investigation of the solution of incomplete fractional integrals and derivatives associated with an incomplete Mittag-Leffler function. Journal of Fractional Calculus and Nonlinear Systems, 3(2), 37–44. https://doi.org/10.48185/jfcns.v3i2.656

Issue

Section

Articles