Investigation of the solution of incomplete fractional integrals and derivatives associated with an incomplete Mittag-Leffler function
Keywords:
Incomplete Mittag-Leer function,, Incomplete Wright Function, Incomplete Fractional Fractional Integrals, Incomplete Fractional Derivatives, Hypergeometric function.Abstract
This paper is based upon incomplete fractional calculus and with the help of this, derived the fractional
calculus formula for the incomplete Mittag-Leffler function. The results obtained are found in the form of
incomplete Wright function and hypergeometric function.
References
A. Wiman, Uber den fundamental satz in der theorie der funcktionen Ex, Acta Mathematica,
vol. 29, pp. 191201, 1905.
A. Wiman, Uber die Nullstellun der Funktionen Ex, Acta Mathematica, vol. 29, pp.
,1905.
A. A. Kilbas, M. Saigo, and R. K. Saxena, Generalized Mittag-Leer function and generalized
fractional calculus operators, Integral Transforms and Special Functions, vol. 15, no. 1, pp.
, 2004.
A. A. Kilbas, Fractional calculus of generalizedWright function, Fractional calculus and applied
analysis, 8(2), 113-126, 2005.
A.A. Kilbas, M. Saigo, and J. Trujillo, On the generalizedWright function", Fractional Calculus
and Applied Analysis, 4:437-460, 2002.
Dharmendra Kumar Singh and Saurabh Porwal, Incomplete Mittag-Leer function, Acta
Universitatis Apulensis, vol 34, p. 151-162, 2013.
Dharmendra Kumar Singh, Incomplete Fractional Calculus Operators, Progress in Fractional
Di erentiation and Applications, 7, No. 3, 191-202 (2021).
E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. London
Math. Soc. 10, 287-293, 1935.
E.M. Wright, The generalized Bessel function of order greater than one, Quarterly Journal of
Mathematics, 11(1):48, 1940.
G. M. Mittag-Leer, Une generalisation de lintegrale de Laplace-Abel, Comptes Rendus
delAcademie des Sciences S erie II , vol. 137, pp. 537539, 1903.
G. M. Mittag-Leer, Sur la nouvelle fonction Ex, Comptes Rendus de lAcademie des Sciences
, vol.137, pp. 554558, 1903.
H. J. Haubold, A. M. Mathai, and R. K. Saxena, Mittag-Leer Functions and Their
Applications, Hindawi Publishing Corporation Journal of Applied Mathematics, Volume 2011.
H. M. Srivastava, M. Aslam Chaudhry and Ravi P. Agarwal, The incomplete Pochhammer
symbols and their applications to hypergeometric and related functions, Integral Trans. Spec.
Funct., 23(9) (2012), 659-683.
I. S. Gupta and L. Debnath, Some properties of the Mittag-Leer functions, Integral
Transforms and Special Functions, vol. 18, no. 5, pp. 329336, 2007.
I. Podlubny, Fractional Di erential Equations, Academic Press, New York, NY, USA, 1999.
Incomplete Fractional Calculus
M. Saigo, A remark on integral operators involving the Gauss hypergeometric functon, Math.
Rep. College General Ed, Kyushu Univ., 11:135-143,i 1978.
M. Saigo and N. Maeda, More generalization of fractional calculus, Transform methods and
special function, Varna Bulgaria, pages 386-400, 1996.
R. K. Saxena, Certain properties of generalized Mittag-Leer function, in Proceedings of the
rd Annual Conference of the Society for Special Functions and Their Applications, pp. 7781,
Chennai, India, 2002.
R. Goren
o and F. Mainardi, Fractional oscillations and Mittag-Leer functions, Tech. Rep.
-14/96, Free University of Berlin, Berlin, Germany, 1996.
R. K. Saxena, S. L. Kalla, and V. S. Kiryakova, Relations connecting multi-index Mittag-Leer
functions and Riemann-Liouville fractional calculus, Algebras, Groups and Geometries, vol. 20,
pp. 363385, 2003.
R. Goren
o, J. Loutschko, and Y. Luchko, Computation of the Mittag-Leer function and its
derivatives, Fractional Calculus and Applied Analysis, vol. 5, no. 4, pp. 491518, 2002.
S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory
and Applications, Gordon and Breach, New York, NY, USA, 1993.
S. Samko, A. A. Kilbas, O. I. Marichev, Fractional integral and derivatives, Theory and
Applications, Gordon and Beach, Sci. Publ., New York, 1993.
T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leer function in the
kernel, Yokohama Mathematical Journal, vol. 19, pp. 715, 1971.
V. S. Kiryakova, A brief story about the operators of the generalized fractional calculus,
Fractional calculus and applied analysis, 11(2), 203- 220, 2008.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Dharmendra Singh

This work is licensed under a Creative Commons Attribution 4.0 International License.