Gohar Fractional Effect on the Diatomic structure and Ro-vibrational Spectroscopy in the Molecular Kratzer Model




Schrödinger Equation, Analytical Solutions, Nikiforov-Uvarov Method, Kratzer Potential, Adomian decomposition method, Gohar Fractional Effect


Solving Schrödinger equation (SE) for the wavefunction and binding energy levels of the diatomic molecular system is essential for modeling its structure and analyzing its spectral properties, as the complete wave function inherently involves all the necessary information to analyze its physical properties, while the obtained energy levels reveal its spectroscopic characteristics. In this work, the Nikiforov-Uvarov (NU) analytical method is brought into the domain of Gohar fractional calculus (GFC). We use the Gohar fractional NU (GFNU) method to solve the fractional hyper-radial SE for the binding ro-vibrational energy spectra of some homo-nuclear and hetero-nuclear diatomic molecules (DMs) in the molecular Kratzer model for arbitrary values of the vibrational and rotational quantum numbers. Graphical analysis is used to explore the effect of the fractional parameter on the obtained diatomic energy levels and their corresponding normalized hyper-radial wave functions. Interestingly, the fractional parameter was found to have a significant effect on the diatomic structure and spectral properties. The graphical behavior of the Kratzer potential (KP) model and its modified version was analyzed for various DMs. It was observed that the characteristic features of both potential models were affected by the variation of the fractional parameter. We also investigated the dependence of the diatomic energies in both potentials on dimensionality, equilibrium inter-nuclear distance, reduced mass, and quantum numbers. This study provided entirely new results for the energy levels of HCL, LiH, ScH, H2, O2, and I2 DMs in the modified Kratzer potential (MKP) that had not been previously reported in the literature.


Shi-Kun Zhong, Ting-Yao Xie, Li Dong, Chen-Xi Yang, Lu-Lin Xiong, Min Li, Guang Luo, 2022. Shape invariance of solvable Schrödinger equations with a generalized hyperbolic tangent superpotential. Results in Physics. 105369. https://doi.org/10.1016/j.rinp.2022.105369.

O. Adebimpe, C. A. Onate, S. O. Salawu, A. Abolanriwa, A. F. Lukman, 2019. Eigensolutions, Scattering phase shift and thermodynamic properties of Hulthén-Yukawa potential. Results in Physics. 102409. https://doi.org/10.1016/j.rinp.2019.102409.

S. B. Doma, A. A. Gohar, M. S. Younes, Analytical Solutions of the Molecular Kratzer-Feus Potential by means of the Nikiforov-Uvarov Method, J. Math. Chem. 61 (2023) 1301-1312. https://doi.org/10.1007/s10910-023-01462-y.

Shi-Hai Dong, D. Morales, J. Garcia-Ravelo, Exact Quantization Rule and Its Applications to Physical Potentials, Int. J. Mod. Phys. E 16 (2007) 189-198. https://doi.org/10.1142/S0218301307005661.

T. Das, A. Arda, 2015. Exact Analytical Solution of the N-Dimensional Radial Schrödinger Equation with Pseudoharmonic potential via Laplace Transform Approach. Advances in High Energy Physics.137038. http://dx.doi.org/10.1155/2015/137038.

E. P. Inyang, F. Ayedun, E. A. Ibanga, K. M. Lawal, I. B. Okon, E. S. William, O. Ekwevugbe, C. A. Onate, A. D. Antia, E. O. Obisung, 2022. Analytical solutions of the N-dimensional Schrödinger equation with modified screened Kratzer plus inversely quadratic Yukawa potential and thermodynamic properties of selected diatomic molecules. 106075. http://doi.org/10.1016/j.rinp.2022.106075.

U. S. Okorie, A. N. Ikot, E. O. Chukwuocha, G. J. Rampho, 2020. Thermodynamic properties of improved deformed exponential-type potential (IDEP) for some diatomic molecules. Results in Physics.103078. http://doi.org/10.1016/j.rinp.2020.103078.

O. Adebimpe, J.O. Okoro, C.A. Onate, 2019. Bound state solutions of the Schrödinger equation and expectation value for some molecules. Results in Physics. 102769. http://doi.org/10.1016/j.rinp.2019.102769.

C. A. Onate, T. A. Akanbi, 2021. Solutions of the Schrödinger equation with improved Rosen Morse potential for nitrogen molecule and sodium dimer. Results in Physics. 103961. http://doi.org/10.1016/j.rinp.2021.103961.

A. K. Roy, Accurate ro-vibrational spectroscopy of diatomic molecules in a Morse oscillator potential, Results in Physics 3 (2013) 103-108. http://doi.org/10.1016/j.rinp.2013.06.001.

C. O. Edet, P. O. Nwbabuzor, E. B. Ettah, C. A. Duque, N. Ali, S. Mahmoud, M. Asjad, 2022. Magneto-transport and thermal properties of the Yukawa potential in cosmic string space-time. Results in Physics. 105749. http://doi.org/10.1016/j.rinp.2022.105749.

V. H. Badalov, H. I. Ahmadov, A. I. Ahmadov, Analytical Solutions of the Schrödinger Equation with the Woods-Saxon Potential for Arbitrary I State, Int. J. Mod. Phys. E 18 (2009) 631-641. http://doi.org/10.1142/S0218301309012756.

I. J. Njoku, C. P. Onyenegecha, C. J. Okereke, A. I. Opara, U. M. Ukewuihe, F. U. Nwaneho, 2021. Approximate solutions of Schrödinger equation and thermodynamic properties with Hua potential. Results in Physics. 104208. http://doi.org/10.1016/j.rinp.2021.104208.

S. M. Ikhdair, R. Sever, Polynomial solutions of the Mie-type potential in the D-dimensional Schrödinger equation, Journal of Molecular Structure: THEOCHEM 855 (2008) 13-17. http://doi.org/10.1016/j.theochem.2007.12.044.

K. J. Oyewumi, K. D. Sen, Exact solutions of the Schrödinger equation for the pseudoharmonic potential: an application to some diatomic molecules, J. Math. Chem 50 (2012) 1039-1059. http://doi.org/10.1007/s10910-011-9967-4.

A. Kratzer, Die ultraroten RotationsspeKtren der Halogenwasserstoffe, Zeitschrift für Physik 3 (1920) 289-307. http://doi.org/10.1007/BF01327754.

C. Berkdemir, A. Berkdemir, J. Han, Bound state solutions of the Schrödinger equation for modified Kratzer’s molecular potential, Chem. Phys. Lett. 417 (2006) 326-329. http://doi.org/10.1016/j.cplett.2005.10.039.

Z. Yalҫin, M. Aktaş, M. Şimşek, Exact solutions of the Schrödinger equation for 1,3S states of the atom with Fues-Kratzer-type potential, Int. J. Quant. Chem. 76 (2000) 618-625. https://doi.org/10.1002/(SICI)1097-461X(2000)76:5%3C618::AID-QUA4%3E3.0.CO;2-9.

Shi-Hai Dong, Guo-Hua Sun, 2004. The Schrödinger Equation with a Coulomb Plus Inverse-Square Potential in D Dimensions. Phys. Scr. 2-3. DOI: 10.1088/0031-8949/70/2-3/004.

S. M. Ikhdair, R. Sever, Exact quantization rule to the Kratzer-type potentials: an application to the diatomic molecules, J. Math. Chem. 45 (2009) 1137-1152. DOI:10.1007/s10910-008-9438-8.

O. Bayrak, I. Boztosun, H. Ciftci, Exact analytical solutions to the Kratzer potential by the asymptotic iteration method, J. Quant. Chem. 107 (2007) 540-544. http://doi.org/10.1002/qua.21141.

S. M. Ikhdair, R. Sever, Exact solutions of the radial Schrödinger equation for some physical potentials, Cent. Eur. J. Phys. 5 (2007) 516-527. http://doi.org/10.2478/s11534-007-0022-9.

S. M. Ikhdair, R. Sever, Polynomial Solutions of the Mie-Type potential in the D-Dimensional Schrödinger Equation, Journal of Molecular Structure: THEOCHEM 855 (2007) 13-17. https://doi.org/10.1016/j.theochem.2007.12.044.

D. Qian, Y. Chen, 2011. On Riemann-Liouville and Caputo Derivatives. Disc. Dyn. Nat. Soci. 562494. https://doi.org/10.1155/2011/562494.

R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014) 65-70. https://doi.org/10.1016/j.cam.2014.01.002.

M. AL-Raeei, M. S. EL-Daher, 2019. A numerical method for fractional Schrödinger equation of Lennard-Jones potential, Phys. Lett. A. 125831. https://doi.org/10.1016/j.physleta.2019.07.019.

M. AL-Raeei, M. S. EL-Daher, 2020. An iteration algorithm for the time-independent fractional Schrödinger equation with Coulomb potential. Pramana J. Phys. 157. https://doi.org/10.1007/s12043-020-02019-3.

M. AL-Raeei, M. S. EL-Daher, 2020. An algorithm for fractional Schrödinger equation in case of Morse potential. AIP Adv. 035305. https://doi.org/10.1063/1.5113593.

H. Rezazadeh, A. G. Davodi, D. Gholami, 2023. Combined formal periodic wave-like and soliton-like solutions of the conformable Schrödinger-KdV equation using the G′/G-expansion technique. Results in Physics. 106352. https://doi.org/10.1016/j.rinp.2023.106352.

M. Bilal, J. Ahmad, 2022. A variety of exact optical soliton solutions to the generalized (2+1)-dimensional dynamical conformable fractional Schrödinger model. Results in Physics. 105198. https://doi.org/10.1016/j.rinp.2022.105198.

H. Karayer, D. Demirhan, F. Büyükkiliҫ, 2016. Conformable Fractional Nikiforov-Uvarov Method. Commun. Theor. Phys. 1.DOI: 10.1088/0253-6102/66/1/012.

M. M. Hammad, A. SH. Yaqut, M. A. Abdel-Khalek, S. B. Doma, 2021. Analytical study of conformable fractional Bohr Hamiltonian with Kratzer potential. Nuclear Physics A. 122307 https://doi.org/10.1016/j.nuclphysa.2021.122307 .



How to Cite

Gohar, A., Abdel-Khalek, M., Yaqut, A., Younes, M., & Doma, S. (2024). Gohar Fractional Effect on the Diatomic structure and Ro-vibrational Spectroscopy in the Molecular Kratzer Model . Journal of Fractional Calculus and Nonlinear Systems, 5(1), 52–70. https://doi.org/10.48185/jfcns.v5i1.1049