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Abstract

The local fractional derivatives marked the beginning of a new era in fractional calculus. Due to their
properties that have never been observed before in the field, they are able to fill in the gaps left by the nonlocal
fractional derivatives and substantially increase the field’s theoretical and applied potential. In this article,
we introduce a new local fractional derivative that possesses some classical properties of the integer-order
calculus, such as the product rule, the quotient rule, the linearity, and the chain rule. It meets the fractional
extensions of Rolle’s theorem and the mean value theorem and has more properties beyond those of previously
defined local fractional derivatives. We reveal its geometric interpretation and physical meaning. We prove
that a function can be differentiable in its sense without being classically differentiable. Moreover, we apply
it to solve the Riccati fractional differential equations to demonstrate that it provides more accurate results
with less error in comparison with the previously defined local fractional derivatives when applied to solve
fractional differential equations. The numerical results obtained in this work by our local fractional derivative
are shown to be in excellent agreement with those produced by other analytical and numerical methods such
as the enhanced homotopy perturbation method (EHPM), the improved Adams-Bashforth-Moulton method
(IABMM), the modified homotopy perturbation method (MHPM), the Bernstein polynomial method (BPM),
the fractional Taylor basis method (FTBM), and the reproducing kernel method (RKM).
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1. Introduction

It is generally agreed that fractional calculus can be traced back to a question that was
asked by L’Hospital in his letters to Leibniz about the validity of extending the derivative
of an integer order to assume fractional orders. Despite its pure origins, this field has
lately come to be recognized for its great potential for accurately modelling a wide variety
of physical phenomena [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] beyond what was previously
possible with the classical integer-order calculus. As time goes on, however, the complex-
ity of natural systems increases, necessitating the formulation and analysis of more gen-
eral and accurate definitions of the fractional derivative. In this regard, several proposals
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for fractional derivatives have enriched the theoretical and applied potential of fractional
calculus. Among the fractional derivatives introduced thus far, we report on those intro-
duced by Riemann-Liouville, Caputo, Hadamard, Caputo-Hadamard, and Riesz. The most
commonly used definitions of the fractional derivative are those of Riemann-Liouville and
Caputo [13], and they are defined as follows:
Definition 1.1. [13] The Riemann-Liouville derivative of fractional order α of a function
f(x) is defined as

RLD
αf (x)=

1
Γ(m−α)

dm

dxm

∫x
0

f(τ)

(x−τ)α−m+1dτ, (1.1)

where m− 1 ⩽ α < m ∈ Z+.
Definition 1.2. [13] The Caputo derivative of fractional order α of a function f(x) is
defined as

CD
αf (x) =

1
Γ(m−α)

∫x
0

f(m) (τ)

(x−τ)α−m+1dτ, (1.2)

where m− 1 ⩽ α < m ∈ Z+.
Since fractional integrals are used to define the aforementioned fractional derivatives,
they exhibit non-local behavior, the non-locality criterion creates what is known as the
"memory effect," [14] in which the non-local fractional derivative of a function takes into
account the entire function history, where the future state of a fractional-order system
depends not only on its present state but also on all of its previous states.
Although the non-local fractional derivatives have many practical uses, they have their
limitations, as they do not satisfy the product rule, quotient rule, chain rule, Rolle’s theo-
rem, and the mean value theorem. The property DαDβf = Dα+βf is not generally valid
for the non-local fractional derivatives. The Riemann-Liouville fractional derivative does
not meet RLD

α(1.1) = 0 for α ∈ (n,n+ 1), n ∈ N , and Caputo fractional derivative is de-
fined only for the classically differentiable functions, which, in turn, limits its applicability
range.
Beyond these limitations, in 2014 R. Khalil, et al. [15] introduced a local definition of the
fractional derivative known as a "conformable fractional derivative" (CFD), extending the
classical limit definition of the derivative and is defined as follows:
Definition 1.3. [15] Given a function f : [0,∞) → R. The CFD of f of order α is defined
by

Tαf (x) = lim
→0

f
(
x+ εx1−α

)
− f(x)

ε
, (1.3)

for x > 0,α ∈ (0, 1).
The CFD meets the product, quotient, and chain rules for two α-differentiable functions,
it also provides theorems analogous to Rolle’s theorem and the mean value theorem in
classical integer-order calculus. However, when the CFD is applied to solve fractional
differential equations, the resulting error is substantially greater than that of the Caputo
fractional derivative. Motivated by this observation, our work aims to introduce a new
local fractional derivative, the "Gohar fractional derivative" (GFD), that is more accurate
than the CFD in a way that results in less error when applied to solve fractional differential
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equations and possesses more properties than both the CFD and the previously defined
non-local fractional derivatives.
For the sake of preserving the nonlocality criterion of fractional calculus, we will introduce
a nonlocal formulation of the GFD in a forthcoming study. However, the nonlocality comes
with its own limitations and our future work will focus on overcoming them.

2. The Gohar Fractional Derivative (GFD)

In this section, we introduce the basic definition and classical features of our new local
fractional derivative. We reveal its geometric interpretation and physical meaning, and
highlight some of its additional properties that are not satisfied by the CFD. To this end,
we proceed with the following definition, which generalizes the classical limit definition
of the derivative.

Definition 2.1. Given a function f : [0,∞) → R, the GFD of f of order α, denoted by Gα,
is defined by

Gαf (x) = lim
h→0

f
(
x
[
1 + ln

(
1 + h Γ(η)

Γ(η−α+1)x
−α
) ])

− f(x)

h
. (2.1)

for x > 0, α ϵ (0, 1), η ϵ R+.

Remark 2.1.
(I) If the limit in the definition above exists, then f is said to be a Gohar differentiable

function (Gα-differentiable function).

(II) For x > 0, α ∈ (0, 1), η ϵ R+. If f is a Gα- differentiable function in an open
interval (0, δ), δ > 0, and limx→0+ Gαf (x) exists, then Gαf (0) = limx→0+ Gαf (x) .

(III) In contrast to the fractional derivatives introduced by Riemann- Liouville and
Caputo, which possess a delay impact due to the existence of a kernel within their integral
form, the GFD does not possess a delay effect because its definition does not depend on a
kernel.

Before we start our discussion, it is worth mentioning the Maclaurin series expansion

ln
(

1+h
Γ (η)

Γ (η−α+1)
x−α

)
=

∞∑
k=1

(−1)k−1

k

(
h

Γ (η)

Γ (η−α+1)
x−α

)k

=h
Γ (η)

Γ (η−α+1)
x−α+O(h2),

(2.2)
as it will be used frequently to construct the arguments in this work.

Theorem 2.1. The GFD is a fractal derivative or a generalization of the q-derivative.

Proof. With the aid of the Maclaurin series expansion in Eq. (2.2), we have

Gαf (x) = lim
h→0

f
(
x
[
1 + h Γ(η)

Γ(η−α+1)x
−α+O(h2)

])
− f(x)

h
.

With the following substitution

q = 1 + h
Γ (η)

Γ (η−α+1)
x−α+O(h2) , q−→1 as h−→0,
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we have

Gαf (x) =
Γ (η)

Γ (η−α+1)
lim
q→1

f (qx) − f(x)

qxα − xα
.

Theorem 2.2. If f : [0,∞) → R is Gα- differentiable at x0 > 0, with α ∈ (0, 1], η ϵ R+,
then f is continuous at x0.

Proof. Consider the following equality

f

(
x0

[
1 + ln

(
1 + h

Γ (η)

Γ (η−α+ 1)
x0

−α

) ])
− f(x0)

=
f
(
x0

[
1 + ln

(
1 + h Γ(η)

Γ(η−α+1)x0
−α
) ])

− f(x0)

h
· h.

Taking the limit of both sides as h→ 0, we have

lim
h→0

f

(
x0

[
1 + ln

(
1 + h

Γ (η)

Γ (η−α+ 1)
x0

−α

) ])
− f(x0)

= lim
h→0

f
(
x0

[
1 + ln

(
1 + h Γ(η)

Γ(η−α+1)x0
−α
) ])

− f(x0)

h
. lim
h→0

h .

By using Eq. (2.2), we have x0

[
1 + ln

(
1 + h Γ(η)

Γ(η−α+1)x0
−α
) ]

= x0 + h
Γ(η)

Γ(η−α+1)x0
1−α +

O(h2).

With the following incremental change

∆x = h
Γ (η)

Γ (η−α+ 1)
x0

1−α +O(h2), with ∆x −→ 0, as h −→ 0,

we have
lim

∆x→0
[f( x0 +∆x) − f(x0)] = Gαf (x0) .0 = 0,

which implies that
lim

∆x→0
f( x0 +∆x) = f(x0).

Theorem 2.3. A Gα-differentiable function at a point need not be classically differentiable
there.

Proof. Consider the function f : [0,∞) → R, defined by f (x) =
3
√
x2. Obviously, it is

G 2
3
-differentiable at x = 0, and for α = 2

3 , in view of Remark 2.1, the value of its GFD at

x = 0 is G 2
3
(f(0))= limx→0+ G 2

3
f (x) = 2

3
Γ(η)

Γ(η+ 1
3)

, where η ϵ R+. However, f ′ (0) does not

exist.

Lemma 2.1. If f : [0,∞) → R is a Gα- differentiable function at x > 0, then

Gαf (x)=
Γ (η)

Γ (η−α+1)
x1−αdf(x)

dx
, (2.3)
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for α ∈ (0, 1], η ϵ R+.
Proof. With the aid of the Maclaurin series expansion in Eq. (2.2), we have

Gαf (x) = lim
h→0

f
(
x
[
1 + h Γ(η)

Γ(η−α+1)x
−α+O(h2)

])
− f(x)

h

with the incremental change

∆x = h
Γ (η)

Γ (η−α+ 1)
x1−α +O(h2) ,∆x −→ 0 as h −→ 0,

we deduce that

Gαf (x) =
Γ (η)

Γ (η−α+ 1)
x1−α lim

∆x→0

f(x +∆x) − f(x )

∆x
=

Γ (η)

Γ (η−α+ 1)
x1−αdf(x)

dx
.

Remark 2.2 Given that the classical derivative df(t)
dt is the instantaneous velocity of a

moving particle at t > 0, Lemma 2.1 provides the physical meaning of GFD as a deviation
from the classical instantaneous velocity in both direction and magnitude.
While the range α ∈ (0, 1] is by far the most important and often used in applications, how
do we define the GFD for α ∈ (n,n+ 1], n ∈ N ?

Definition 2.2. For α ∈ (n,n+ 1], n ∈ N, η ϵ R+. The GFD of a function f : [0,∞] → R

of order α, denoted by Gα;n, is defined by

Gα;nf (x) = lim
h→0

f(n)
(
x
[
1 + ln

(
1 + h Γ(η)

Γ(η−α+1)x
−α
) ])

− f(n)(x)

h
.

From Definition 2.2 and Lemma 2.1, via mathematical induction on n, we can show that

Gαf (x) =
Γ (η)

Γ (η−α+ 1)
xn+1−αf(n+1)(x),

provided that f is (n+ 1)-differentiable function at x > 0.

Theorem 2.4. If f (x) = xη, η ∈ R+, then the following relation holds

Gαf (x)=
Γ (η+ 1)

Γ (η−α+1)
xη−α. (2.4)

Proof. With the aid of Eq. (2.3), we have

Gαf (x) = Gαx
η =

ηΓ (η)

Γ (η−α+ 1)
xη−α =

Γ (η+ 1)
Γ (η−α+ 1)

xη−α.

Remark 2.3. The relation defined by Eq. (2.4) coincides with the relation for the deriva-
tive of monomials in the Caputo sense. That is,

Gαx
n = CD

αxn.
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In what follows, we introduce the theorem that captures the standard classical features of
the integer-order derivatives.

Theorem 2.5. For α ∈ (0, 1], η ∈ R+. Suppose that f,g : [0,∞) → R are Gα-differentiable
functions at x > 0. Then they satisfy the following properties:

(I) Linearity:
Gα (λf+ µg) (x) = λGαf (x) + µGαg(x); λ,µ ∈ R.

(II) Product rule:
Gα (fg) (x) = f (x)Gαg (x) + g(x)Gαf(x).

(III) Quotient rule:

Gα

(
f

g

)
(x) =

g (x)Gαf (x) − f(x)Gαg(x)

[g (x)]2
, g (x) ̸= 0.

(IV) Chain rule:
Gα (f ◦ g) (x) = Gα (g (x)) f ′ (g (x)) .

(V) Derivative of a constant:
Gα (c) = 0, c ∈ R.

Proof. With the aid of Eq. (2.3), we have

Gα (λf+ µg) (x) =
Γ (η)

Γ (η−α+ 1)
x1−α d

dx
(λf (x) + µg (x))

= λ

(
Γ (η)

Γ (η−α+ 1)
x1−αdf (x)

dx

)
+ µ

(
Γ (η)

Γ (η−α+ 1)
x1−αdg (x)

dx

)
= λGαf (x) + µGαg (x) .

Gα (fg) (x) =
Γ (η)

Γ (η−α+ 1)
x1−α d

dx
(f (x)g(x))

=
Γ (η)

Γ (η−α+ 1)
x1−α

(
f (x)

dg (x)

dx
+ g (x)

df (x)

dx

)
= f (x)

(
Γ (η)

Γ (η−α+ 1)
x1−αdg (x)

dx

)
+ g (x)

(
Γ (η)

Γ (η−α+ 1)
x1−αdf (x)

dx

)
= f (x)Gαg (x) + g (x)Gαf (x) .

Gα

(
f

g

)
(x) =

Γ (η)

Γ (η−α+ 1)
x1−α d

dx

(
f(x)

g(x)

)
=

Γ (η)

Γ (η−α+ 1)
x1−α

(
g (x) df(x)

dx − f (x) dg(x)
dx

(g (x))2

)

=
g (x)

(
Γ(η)

Γ(η−α+1)x
1−αdf(x)

dx

)
− f(x)

(
Γ(η)

Γ(η−α+1)x
1−αdg(x)

dx

)
(g (x))2

=
g (x)Gαf (x) − f(x)Gαg (x)

(g (x))2 .



A.A. Gohar et al. | Gohar Fractional Derivative: Theory and Applications 23

Gα (c) =
Γ (η)

Γ (η−α+ 1)
x1−α d

dx
(c) =

(
Γ (η)

Γ (η−α+ 1)
x1−α

)
· 0 = 0.

Since f, g areGα-differentiable functions, their composite function f◦g isGα-differentiable
and satisfies Definition 2.1 as follows

Gα (f ◦ g ) (x) = lim
h→0

f
(
g
(
x
[

1 + ln
(

1 + h Γ(η)
Γ(η−α+1)x

−α
) ]))

− f(g(x))

h

= lim
h→0

f
(
g
(
x
[

1 + ln
(

1 + h Γ(η)
Γ(η−α+1)x

−α
) ]))

− f (g (x))

g
(
x
[

1 + ln
(

1 + h Γ(η)
Γ(η−α+1)x

−α
) ])

− g (x)

·
g
(
x
[

1 + ln
(

1 + h Γ(η)
Γ(η−α+1)x

−α
) ])

− g (x)

h
.

Since g is Gα-differentiable at x > 0, it is continuous there by Theorem 2.2, therefore,
with the aid of Eq. (2.2), we have

∆g (x) = g
(
x

[
1 + ln

(
1 + h

Γ (η)

Γ (η−α+ 1)
x−α

) ])
− g (x)

= g

(
x+ h

Γ (η)

Γ (η−α+ 1)
x 1−α +O

(
h2))− g (x) = g (x+ ∆x) − g(x) −→ 0, as h −→ 0,

where we take ∆x = h Γ(η)
Γ(η−α+1)x

1−α +O
(
h2
)

. Consequently,

Gα (f ◦ g) (x) = lim
h→0

g
(
x
[

1 + ln
(

1 + h Γ(η)
Γ(η−α+1)x

−α
) ])

− g (x)

h

· lim
∆g(x)→0

f (g (x) + ∆g (x)) − f (g (x))
∆g (x)

= Gαg (x) · f ′ (g (x)) ; h, ∆g (x) ̸= 0.

In view of the chain rule included in Theorem 2.4, we introduce the following corollary.

Corollary 2.1. For α ∈ (0, 1], η ϵ R+, we have the following results:

(I)

Gα

(
xα

α

)
=

Γ (η)

Γ (η−α+ 1)
.

(II)

Gα

(
sin
(

Γ (η−α+ 1)
Γ (η)

xα

α

) )
= cos

(
Γ (η−α+ 1)

Γ (η)

xα

α

)
.

(III)

Gα

(
cos(

Γ (η−α+ 1)
Γ (η)

xα

α
)

)
= −sin(

Γ (η−α+ 1)
Γ (η)

xα

α
).

(IV)

Gα

(
exp(

Γ (η−α+ 1)
Γ (η)

xα

α
)

)
= exp(

Γ (η−α+ 1)
Γ (η)

xα

α
).
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Remark 2.4. Relations II, III, and IV of corollary 2.1 imply the existence of a pseudo-
invariant space corresponds to the GFD on which the natural exponential, sine, and cosine
functions are Gα-invariant and possess their classical integer-order derivatives.

Now, we shall demonstrate that Rolle’s theorem and the mean value theorem can be gen-
eralized to include Gα-differentiable functions.

Theorem 2.6. (Rolle’s theorem for Gα-differentiable functions). Given that α ∈ (0, 1), a >
0, η ϵ R+. If f : [a,b] → R is a function that meets the following criteria:

(I) f is Gα-differentiable on (a,b) ,
(II) f is continuous on [a,b],
(III) f (a) = f (b) .

Then, there exists c ∈ (a,b), such that Gα (f (c)) = 0.

Proof. Given that f is continuous on [a,b], and f (a) = f (b), there must be a local extreme
point c ∈ (a,b) at which

Gαf
(
c+
)
= lim

h→0+

f
(
c
[
1 + ln

(
1 + h Γ(η)

Γ(η−α+1)c
−α
) ])

− f(c)

h
,

Gαf
(
c−
)
= lim

h→0+

f
(
c
[
1 + ln

(
1 + h Γ(η)

Γ(η−α+1)c
−α
) ])

− f(c)

h
.

Since the two limits have opposite signs, we deduce that

Gαf (c) = 0.

Theorem 2.7. (Mean value theorem for Gα-differentiable functions). Given that α ∈
(0, 1), a > 0, η ϵ R+. If f : [a,b] → R is a function that meets the following criteria:

(I) f is Gα-differentiable on (a,b) ,
(II) f is continuous on [a,b].

Then, there exists c ∈ (a,b), such that

Gαf (c) =
αΓ (η)

Γ (η−α+ 1)

(
f (b) − f (a)

bα − aα

)
.

Proof. Let us introduce the function ϕ(x) to be

ϕ (x) = f (x) − f (a) −α

(
f (b) − f (a)

bα − aα

)(
xα

α
−
aα

α

)
.

Applying GFD to both sides of the equation above, we have

Gαϕ (x) = Gαf (x) −α

(
f (b) − f (a)

bα − aα

)
Gα

(
xα

α

)
.
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The function ϕ (x) satisfies Rolle’s theorem for Gα-differentiable functions, and so there
must be a point c ∈ (a,b) at which Gα (ϕ (c)) = 0. With the aid of the relation I in
corollary 2.1, we deduce that

Gαf (c) =
αΓ (η)

Γ (η−α+ 1)

(
f (b) − f (a)

bα − aα

)
.

Theorem 2.8. (Extended mean value theorem for Gα-differentiable functions). Given
that α ∈ (0, 1), a > 0, η ϵ R+. If f,g : [a,b] → R are two functions that meet the
following criteria:

(I) f,g are Gα-differentiable on (a,b),
(II) f,g are continuous on [a,b] .

Then, there exists a point c ∈ (a,b) such that

Gαf (c)

Gαg (c)
=
f (b) − f(a)

g (b) − g(a)
.

The following proposition is a direct consequence of the mean value theorem.

Proposition 2.1. Given the Gα-differentiable function f : [a,b] → R, whose GFD is
bounded on [a,b] for α ∈ (0, 1) , a > 0, η ϵ R+. If Gαf is continuous at either a or b, then
f is a uniformly continuous function on [a,b], and therefore f is bounded over [a,b].

Theorem 2.9. For α ∈ (0, 1], a > 0, let f : [a,b] → R be a function that has the following
properties:

(I) f is Gα- differentiable on (a,b),
(II) f is continuous on [a,b] .

Then, we have:

(I) If Gαf (x) > 0, ∀x ∈ (a,b), then f is a strictly increasing function on [a,b].
(II) If Gαf (x) < 0, ∀x ∈ (a,b), then f is a strictly decreasing function on [a,b].

Proof. Suppose that x0, xf ∈ [a,b], with x0 < xf. Then [x0, xf] ⊆ [a,b] , (x0, xf) ⊆
(a,b); thus, f is Gα- differentiable on (x0, xf) and continuous on [x0, xf]. The mean value
theorem, Theorem 2.7, implies the existence of c ∈ (x0, xf) with

Gαf (c) =
αΓ (η)

Γ (η−α+ 1)

(
f (xf) − f (x0)

xfα − x0α

)
.

(I) If Gα (f (c)) > 0, then f (xf) > f (x0), ∀x0 < xf, and so f is a strictly increasing function
on [a,b].
(II) IfGα (f (c)) < 0, then f (xf) < f (x0), ∀x0 < xf, and so f is a strictly decreasing function
on [a,b].

Theorem 2.10. For α ∈ (0, 1], a > 0, let f : [a,b] → R be a function that has the following
properties:

(I) f is Gα- differentiable on (a,b),
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(II) f is continuous on [a,b] .

If Gαf (x) = 0, ∀x ∈ (a,b), then f (x) = C,C ∈ R .

Proof. Using the same argument as that of Theorem 2.9, the mean value theorem implies
the existence of c ∈ (x0, xf) with

Gαf (c) =
αΓ (η)

Γ (η−α+ 1)

(
f (xf) − f (x0)

xfα − x0α

)
= 0.

Therefore, f (xf) − f (x0) = 0, or f (x0) = f (xf) . Given that x0and xf are arbitrary numbers
in [a,b] with x0 < xf , then f (x) = C,C ∈ R .

Corollary 2.2. For α ∈ (0, 1], a > 0, let f,g : [a,b] → R be Gα-differentiable functions
with
Gαf (x) = Gαg (x) , ∀x ∈ (a,b). Then there exists a constant C ∈ R such that f (x) =
g (x) +C.

Proof. Consider the differenceψ(x) = f (x)−g (x) . SinceGαψ(x) = 0,∀x ∈ (a,b), Theorem
2.10 implies that ψ (x) = C,C ∈ R .

It is worth mentioning that G 1
2

(√
x
)
= Γ(η)

2Γ(η−α+1) , rather than being equal to
√
π

2 as in the
case of the Riemann-Liouville nonlocal fractional derivative, which suggests that the GFD
has its own geometric interpretation, which we shall introduce in the following Theorem.

Theorem 2.11. (The Geometric interpretation of GFD). Given a Gα-differentiable func-
tion f : [0,∞) → R, the GFD of f at a point x0 ⩾ 0 is the slope of the Gohar fractional
curve (GFC) that intersects the graph of f at (x0, f(x0)), and is defined by

f (x) = (fα (x0) +

(
fα−1 (x0) (x

α − x0
α)

x0α−1

)
Gαf (x0))

1
α

,

for α ∈ (0, 1], η ϵ R+.

Remark 2.5. For the special case in which α = 1, the GFC passing through a point on the
graph of f reduces to the tangent line to the graph of f at that point. and therefore, the
GFD of f reduces to the classical derivative of f at that point.

In the next section, we will define the “Gohar fractional integral” (GFI) corresponding
to the GFD and introduce the Gohar fractional extension of the fundamental theorem of
calculus.

3. The Gohar Fractional Integral (GFI)

Definition 3.1. For x ⩾ 0, if f is a function defined on (0, x], then the GFI of f, of order α,
denoted by Tα, is defined by

Tαf (x)=
Γ (η−α+1)

Γ (η)

∫x
0

f(t)

t1−α
dt, (3.1)

where α ∈ (0, 1), η ϵ R+.
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Remark 3.1.
(I) For α = 1, the GFI coincides with the classical Riemannian integral.

(II) If the Riemann improper integral in Eq. (3.1) exists, then f is said to be a Gohar
integrable function (Tα-integrable function).

Theorem 3.1 (Fundamental Theorem of Gohar Fractional Calculus). For x ⩾ 0, If f is a
continuous Tα-integrable function, then

Gα (Tαf (x)) = f (x) ,

Tα (Gα (f (x))) = f (x) − f (0) ,

where α ∈ (0, 1), η ϵ R+.

Proof.

Gα (Tαf (x)) =
Γ (η)

Γ (η−α+ 1)
x1−α d

dx
(Tαf (x))

=
Γ (η)

Γ (η−α+ 1)
x1−α d

dx

(
Γ (η−α+ 1)

Γ (η)

∫x
0

f(t)

t1−α
dt

)
=

Γ (η)

Γ (η−α+ 1)
x1−α

(
Γ (η−α+ 1)

Γ (η)

f (x)

x1−α

)
= f (x) .

Tα (Gα (f (x))) =
Γ (η−α+ 1)

Γ (η)

∫x
0

Gα (f (t))

t1−α
dt

=
Γ (η−α+ 1)

Γ (η)

∫x
0

Γ (η)

Γ (η−α+ 1)
t1−αdf(t)

dt

dt

t1−α

=
Γ (η−α+ 1)

Γ (η)

(
Γ (η)

Γ (η−α+ 1)
(f (x) − f (0))

)
= f (x) − f (0) .

4. Applications

4.1. Gohar fractional differential equations

Consider the following fractional differential equation in view of the GFD

G 1
2
f (x)=(1+x)n, f (0)= 0. (4.1)

By using Eq. (2.3), and the Maclaurin series expansion of the binomial (1 + x)n, we have

G 1
2
f (x) = (1 + x)n,

Γ (η)

Γ
(
η+ 1

2

)x 1
2
df(x)

dx
=

∞∑
k=0

(
n

k

)
xk,

df(x)

dx
=

Γ
(
η+ 1

2

)
Γ (η)

∞∑
k=0

(
n

k

)
xk−

1
2 ,
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∫
df (x) =

Γ
(
η+ 1

2

)
Γ (η)

∞∑
k=0

(
n

k

) ∫
xk−

1
2dx,

f (x) =
Γ
(
η+ 1

2

)
Γ (η)

∞∑
k=0

(
n

k

)
xk+

1
2

k+ 1
2

+C =

∞∑
k=0

(
n

k

)
Γ
(
η+ 1

2

)
(k+ 1

2)Γ (η)
xk+

1
2 +C.

For η = k+ 1
2 , we have

f (x) =

∞∑
k=0

(
n

k

)
Γ (k+ 1)

(k+ 1
2)Γ

(
k+ 1

2

)xk+ 1
2 +C,

Since f (0) = 0, the series solution of Eq. (4.1) is given by

f (x) =

∞∑
k=0

(
n

k

)
Γ (k+ 1)
Γ
(
k+ 3

2

)xk+ 1
2 ,
(
n

k

)
=

n!
k!(n− k)!

.

This solution is compatible with that of Caputo non-local fractional derivative given by Eq.
(1.2).

Now, let us solve another Gohar fractional differential equation of the form

G 1
2
f (x) = x2cos (x) , f (0) = 0. (4.2)

With the aid of Eq. (2.3) and the Maclaurin series expansion of the cosine function, we
proceed as follows:

G 1
2
f (x) = x2cos (x) ,

Γ (η)

Γ
(
η+ 1

2

)x 1
2
df(x)

dx
=

∞∑
k=0

(−1)k

(2k)!
x2(k+1),

df(x)

dx
=

Γ
(
η+ 1

2

)
Γ (η)

∞∑
k=0

(−1)k

(2k)!
x2k+ 3

2 ,

∫
df (x) =

Γ
(
η+ 1

2

)
Γ (η)

∞∑
k=0

(−1)k

(2k)!

∫
x2k+ 3

2dx,

f (x) =
Γ
(
η+ 1

2

)
Γ (η)

∞∑
k=0

(−1)k

(2k)!
x2k+ 5

2

2k+ 5
2

+C =

∞∑
k=0

(−1)k

(2k)!
Γ
(
η+ 1

2

)
(2k+ 5

2)Γ (η)
x2k+ 5

2 +C,

for η = 2k+ 5
2 , we have

f (x) =

∞∑
k=0

(−1)k

(2k)!
Γ (2k+ 3)

(2k+ 5
2)Γ

(
2k+ 5

2

)x2k+ 5
2 +C =

∞∑
k=0

(−1)k
(2k+ 3) (2k+ 2)(2k+ 1)

Γ
(
2k+ 7

2

) x2k+ 5
2 +C,

since f (0) = 0, the series solution of Eq. (4.2) takes the form

f (x) =

∞∑
k=0

(−1)k
(2k+ 3) (2k+ 2)(2k+ 1)

Γ
(
2k+ 7

2

) x2k+ 5
2 .

This solution is compatible with that of Caputo non-local fractional derivative given by Eq.
(1.2).
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4.2. The Gohar fractional Riccati differential equations (GFRDEs)

Consider the nonlinear Riccati fractional differential equation in the GFD sense:

Gαf (x) + (f (x))2 = 1, f (0) = 0, (4.3)

where α ∈ (0, 1], x ⩾ 0, η ϵ R+. With the aid of Eq. (2.3), the MATLAB software is utilized
to obtain the following solutions for α = 0.75 and α = 0.9:

f (x)=
exp

(
8x3/4

3λ

)
−1

exp
(

8x3/4

3λ

)
+1

, α=η = 0.75, (4.4)

f (x)=
exp

(
20x9/10

9λ

)
−1

exp
(

20x9/10

9λ

)
+1

, α=η = 0.9. (4.5)

Another nonlinear Riccati fractional differential equation is expressed in view of the GFD
as

Gαf (x)= 2f (x)−(f (x))2+1,f (0)= 0, (4.6)

where α ∈ (0, 1], x ⩾ 0, η ϵ R+. With the aid of Eq. (2.3), the MATLAB software is utilized
to produce the following solution for α = 0.9:

f (x)=
eν−

√
2eν+

√
2+1

eν+1
,α = η= 0.9, (4.7)

where

ν =
2
√

2
9λ

9λln
(√

2+1
)

√
2

−10x9/10

 , λ =
Γ (η)

Γ
(
η+ 1

4

) .

In a forthcoming article, we will go further into the wide range of potential applications
of the GFD.

5. Results and Discussion

In this section, we lay out the main objective of this work and provide numerical and
graphical evidence to prove that the GFD yields more accurate results than the CFD when
applied to solve fractional differential equations. Some numerical results of the solutions
given by Eqs. (4.4), (4.5), and (4.7) that are obtained by applying the GFD to the GFRDEs
defined by Eqs. (4.3) and (4.6) are included in Tables 1-3 for various values of the pa-
rameters α and η, where we take α = η, along with the corresponding results obtained by
using the CFD [15], EHPM [16], IABMM [16], MHPM [17], BPM [18], FTBM [19], and
RKM [20] for comparison purposes. A good agreement can be observed in Tables 1-3 be-
tween the numerical solutions obtained with the GFD and those obtained with the EHPM,
IABMM, MHPM, BPM, FTBM, and RKM methods. On the other hand, the results obtained
by the CFD do not coincide with those from the aforementioned methods or with our own,
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which, in turn, proves that the GFD yields more accurate results with less error in compar-
ison with the CFD. In Figures 1-3, we graphically demonstrate the absolute relative error
for the numerical solutions to the Riccati fractional differential equations obtained by our
newly proposed GFD and those obtained by the CFD. The absolute relative error for the
two local fractional differential operators is obtained by subtracting the exact results for
the Riccati fractional differential equations obtained at α = 1 in Ref. [18] from the corre-
sponding results obtained by the GFD and CFD at α = 0.75, α = 0.9. Once again, the GFD
reveals more accuracy with less error compared to the CFD, as suggested by their absolute
relative error. Figure 4 reveals the geometric interpretation of the GFD with the quadratic
function Q (x) = x2. The GFC is depicted for α =0.4, α =0.6, α =0.8, and α = 1, where
it crosses the graph of Q(x) at the point (2,4), for η = 0.5. Figure 4 confirms what we
have mentioned earlier in Remark 2.5 about the GFC, as it converges to the tangent line
as α approaches 1.

Table 1: Comparison of the numerical solutions to Eq. (4.3) with the other methods for α = 0.75.
x 0 0.2 0.4 0.6 0.8 1

GFD 0 0.31439 0.49848 0.63022 0.72609 0.79618
CFD [13] 0 0.37889 0.58539 0.72064 0.81029 0.87006

EHPM [14] 0 0.3214 0.5077 0.6259 0.7028 0.7542
IABMM [14] 0 0.3117 0.4855 0.6045 0.688 0.7478
MHPM [15] 0 0.3138 0.4929 0.5974 0.6604 0.7183

BPM [16] 0 0.30996891 0.48162749 0.59777979 0.67884745 0.73684181
FTBM [17] 0 0.30997528 0.48163169 0.59778267 0.67884949 0.73683667
RKM [18] 0 0.307359 0.480346 0.597542 0.679657 0.738213

Table 2: Comparison of the numerical solutions to Eq. (4.3) with the other methods for α = 0.9.
x 0 0.2 0.4 0.6 0.8 1

GFD 0 0.23952 0.42667 0.57607 0.69138 0.7778
CFD [13] 0 0.25526 0.45191 0.60539 0.72063 0.80445

EHPM [14] 0 0.2647 0.4591 0.6031 0.7068 0.7806
IABMM [14] 0 0.2393 0.4234 0.5679 0.6774 0.7584
MHPM [15] 0 0.2391 0.4229 0.5653 0.674 0.7569

BPM [16] 0 0.23878798 0.42258214 0.56617082 0.67462642 0.75460256
FTBM [17] 0 0.23878913 0.42258308 0.56617156 0.67462699 0.7545888
RKM [18] 0 0.237652 0.421766 0.565673 0.674467 0.754632

Table 3: Comparison of the numerical solutions to Eq. (4.6) with the other methods for α = 0.9.
x 0 0.2 0.4 0.6 0.8 1

GFD 0 0.30718 0.67131 1.0666 1.4397 1.7485
CFD [13] 0 0.33295 0.73105 1.1561 1.5422 1.8457

EHPM [14] 0 — — — — 2.0697
IABMM [14] 0 — — — — 1.7356
MHPM [15] 0 — — — — 1.872

BPM [16] 0 0.31488815 0.69756771 1.10789047 1.47772823 1.76542008
FTBM [17] 0 0.31485423 0.69751826 0.90364539 1.47768008 1.76525852
RKM [18] 0 — — — — —
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Figure 1: The absolute relative error for the GFD and CFD for Eq. (4.3) at α = 0.75.

Figure 2: The absolute relative error for the GFD and CFD for Eq. (4.3) at α = 0.9.
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Figure 3: The absolute relative error for the GFD and CFD for Eq. (4.6) at α = 0.9.

Figure 4: The graph of the quadratic function Q (x) = x2 intersecting its GFCs at (2,4).
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