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Abstract

This paper aims to investigate the solutions of a new generalized form of the fractional Kinetic equation
involving Hadamard fractional integral operator and generalized k-Bessel function. The graphics interpreta-
tion of the solutions for fractional Kinetic equations for various values are presented. These results are very
useful for research in several issues in the applied sciences.

Keywords: Fractional Kinetic equation; k-Bassel function, Gamma function; Hadamard fractional integral
operator; Mellin transform.
2010 MSC: 26A33, 74A25, 33C45, 33C60.

1. Introduction and Preliminaries

The subject of fractional calculus is the calculus of derivatives and integrals of any
arbitrary order. In view of its scientific applications in the last three decades, it has gain
a significant and attractiveness to the researchers of this area. For more details about
fractional calculus and its applications in engineering and science, we refer the readers
to these works [1, 2, 3, 4, 5, 6, 40, 8, 9, 10, 11, 12]. Very recently, during COVID-19
pandemic appeared many research papers studied transmission dynamics of COVID-19
mathematical model involving fractional derivative, for examples [13, 14, 15].

The Mellin’s integral transform is regarded as one of the most important useful tools in
mathematics and numerous applications. Indeed, the Mellin integral transform is strongly
linked to the Fourier transform, however, it is more suitable for certain applications, such
as the theory special functions of the hypergeometric type, integral transforms with the
functions of the hypergeometric type in the kernels and fractional calculus.
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The authors in [3], defined the Mellin integral transform of the function ¢(t) as fol-
lows:

Mip(t)(r) = |t lp(dt, (reC)teR, LD
0
and the inverse Mellin integral transform is given by
1 e+1o0
Mt =5 | el (e =), (1.2
T Je—ioo

Furthermore, consider ¥(t) be a function, then the Mellin convolution of 9(t) and ¢(t) is
given by

T

D= (8%0)(1) = L 9 (D)o (1.3)

In 2012, Mathur and Poonia [16], defined the Mellin transformation of ¢(t) in [0, a]
as follows:

a
M[e(t),7,0,a] = O(1) := J a "t le(t)dt, t € [0, al. (1.4)
0
Then,
1 e+1i00 t—T
ot) = J —M[e(t),7,0,c]dr. (1.5)
21 Je oo T
Also, the first kind of k-Bessel function given by [17], as
y,A _ > 1) (y)‘[‘,k 1 E T 1
er (2) TZ_O( N e 2) - (1.6)
where k € R, A, Ly € C, (1) > 0, and
Fk(y+rk)
e € C\ {0}, k € R,
(e imq T D a.7)
yly+k)..y+(r—1k), (reN;yeC),
and the classical Euler’'s Gamma function is the following:
(o0} tk
Me(y) :J tYle wdt:=kk 1T (9) (R(y) > 0). (1.8)
0 k
In addition, the authors [18], generalized the k-Bessel function JE/’{\(Z) as follows:
5 ad (—c)" £\ 2r+
= —= . 1.
Wl,c(t) Z Fk(rk—l—H—k)r' <2) ( 9)

=0

The kinetic equations are fundamental in mathematical physics and natural sciences
that interpretation the continuity of motion of the materials. In the present work, the
function (1.9) was taken into consideration and we try to get solutions of fractional Kinetic
equations. For more Details about fractional Kinetic equations and its solutions, the k-
Bessel functions and the k-Pochhammer symbols, we refer readers to [19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. In particular, Samraiz et al.
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[40], studied the generalized fractional kinetic equation using the (k, s)-Hilfer-Prabhakar
derivative. Saxena and Kalla [41], in 2008 studied the following Kinetic equation in sense
of the Riemann-Liouville fractional integral

N(t) — No(p(t) =8 R]_I][/N(t), (1.10)

such that g I} is the Riemann-Liouville fractional integral operator.
In 2017, Nisar et al. [42], established the solutions of the following fractional Kinetic
equations relating to the generalized k-Bessel function

N(t) — NogWE (t) = =8 reIYN(t). (1.11)

Very recently, the solutions of the following fractional Kinetic equations involving prod-
uct of generalized k-wright function investigated by Ahmed et al. [23],

N(t) — Nog(t) = —8Y HIYN(t), (1.12)

where 1) is the Hadamard fractional integral operator defined as

(MY @) (D) -—1Jt ogt) ©as ) > 0,050 (1.13)
H 0+(P - F(y) 0 g S S s Y ’ . .
For more details about the Hadamard fractional integral operator, can see these works [3].
In this work, we will discuss the solution of the following generalized fractional Ki-
netic equation involving Hadamard fractional integral operator and generalized k-Bessel

function:
N(t) — NoWe(t) = =8 nIyN(t). (1.14)

2. Solutions of Generalized Fractional Kinetic Equations

In this section, we discuss the solutions of generalized fractional Kinetic equations
including the generalized k-Bessel function by applying the Mellin transform technique.

Theorem 2.1. Consider 1,c,t € C,5,y > 0, and k € R. Then, generalized fractional Kinetic
equation (1.14) has the following solution

C)T (2T’+ )
N() NOZ Fk rk+l+k)r'<2) log(t)

xZZ [log(t)®]¥]" [log(t)~ @™+ ¥Vl — (wy +v +2)]. 2.1

n=0v=0
Proof. We recall the Mellin transform of Hadamard fractional integral operator
M uIYe)(t) = (1) Y D(1),

where @(1) = [ a 7 "t" Lp(t)dt.
Now, by applymg the Mellin transform on both sides of (1.14), we have

MIN()] = NoMIW (8)] — 8Y ML IYN(t)]. (2.2)
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Hence,

_ R (—c)" ty 2r+)
N(T)—NOM”Oa t ;)rk(ruwk)r!(z) dt]—fﬂM[HqN(t)}. (2.3)

By interchanging integration and summation order in Equ. (2.3), we get

S B S M O U

) (2r+1)
_NO(Z M rk+cl+k)rv(2> " )((T+21T+]1<))

which leads to

T T 0 ny
Nir) = NO(Z M rk+Cl)+k)rl(2)(2 -’ )> ((T+21r+,1<)> LLZ_()(_”HC) S

Next, applying the inverse Mellin transform of the equation (2.4), we obtain

T

¢) 2r+E)\ — 7 4
N =No( 3 p e () ) S e () e

Since,

M—1< T*HV )
(T+2r+ )

00th T*HY
[
0 T (T+2r+y)
(oe]

(—(2r+ %))V J t T (WY FVE2) g
0

M

<
|

0

M

(—(2r+ %))V(logt) mHWHF[l — (wy +v+2)].
0

<
Il

Then,
o (o 2N §T sy
N(t) =N (;Fkrk+l+k)r'(2) )go(—l) (®)
—(2r+%))v(logt)uy+v+1l“[1—(m/—l—v—i—Z)]. (2.6)
v=0
So,

(—c)" (@r+})
N NOZ N ( rk+l+k)r'<2> log(t)

XZZ [1og()%]]* [log(t) @™ )]V T[1 — (wy +v +2)]. (2.7)

n=0v=0
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Corollary 2.2. Consider c,1,t € C and 4,y > 0. Then, the following equation
N(t) = NoW{ o (t) = —8Y nI¥N(t), (2.8)

has the following solution

T

¢) (2r+1)
N() NOZFr+l+1)r'(2> log(t)

X ZZ [log(t) }”[log(t)_(ZHU]VFH—(m/—i—\)—i-Z)].

n=0v=0
Proof. By putting k = 1 in Equ. (1.14), the proof is finished. O]
Theorem 2.3. Consider 1,c,t € C,5,y > 0, and k € R. Then, the following equation

N(t) — NoWE(8Y1Y) = —8Y uIYN(t), (2.9)

has the following solution

R (—c)" §YaY s (2r+d)
N(t) _Nog Fk(rk+l+k)r!( 2 )" log(t)
x> N [ [log(®]]* [log(t)" Y HRITL — (uy +v+2). (2.10)
n=0v=0
Proof. we have (M I @)(1) = (1) 7Y ® (1), such that ®(1) = [ a "t Lo(t)dt.

Now, by taking the Mellin transform on both sides of Equ. (2 9), we get
MIN(t)] = NoMWE(8V1Y)] — 8Y M Iy N(t)). (2.11)

Thus,

a e )T §Y1Y N (2r+1)
N(T) = NOMHO a Y . (Tk(:l)+ o ( ) - dt] — Y M[,IYN()].
r=0

2
(2.12)
Similarly, as in Theorem 2.1, we conclude that
o (—c)" 8YaYy 2r+1) 1 > S\ MY
N(t) = Np —_— (=DM = .
(;)Fk(rk—i-l—i-k)r!( 2 ) )<(T+2W+lﬁ/))uo T
(2.13)

Applying Mellin inverse, we have

B 0 (—c)" dYavy 2r+{)y — B -1 &
N(t)NO<;)rk(Tk+l+k)T!< 2 ) )HZO( DR <(T+2W+113)>'

(2.14)
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Since,

M—1< T*HY >
(T4 2ry + )

oo —T T*HY
[,
0o T (T+2w+l)

o0

o0
= Z (2ry + )v J t T (W v +2) g
0
—0

Z Zw+ ) (logt)WHHF[l—(uv+v+2)].
—0

<

Then,
_ — (—c)" §YaYy 2r+i)\ — WSy
N() _NO(;O Fk(rk—l—l—i—k)r!( 2 ) );f‘” (8)
- by v v
x Y (= (@ry+-5)"(log )" M1 — (wy +v+2)],
v=0
hence, the proof is completed. O

Corollary 2.4. Consider c,1,t € C and 6,y > 0. Then, the following equation
N(t) — NoW{ (8YtY) = —8Y IYN(t), (2.15)
has the following solution

e —)" §YaY  (or
Nt :NO;) F(Ti—lcj—l)r!( 5 ) Vlog(t)

X Z Z [— [log(t){’]y}”[log(t)—@rvﬂv}]"r[l ~(wy +v+2).

n=0v=0
Proof. By putting k = 1 in Equ. (2.10), the proof is finished. O
Theorem 2.5. Consider ,¢,t € C,0,y >0, and d # «. Then, the following equation
N(t) — NoWE(8Y1Y) = —a¥ fIYN(t), (2.16)

has the following solution

B > (—c)" §YaYy (2r+y)
N(t)_NOZ - Tl Tk+l—|—k)r!( 2 ) logy

XZZ [log(t)*]"]*[log(t)~ (2ry+3 YT — (wy +v +2)). (2.17)

nu=0v=0

Proof. We can prove this theorem by same technique used in Theorem 2.3. O
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Corollary 2.6. Consider c,1,t € C,5,y >0, and 6 # «. Then, the following equation
N(t) = NoW{ (8YtY) = —a¥ 4IYN(1), (2.18)

has the following solution

o0

dYaY | ry1)
Z r+l+1 () gl

% ZZ log ]”[log(t)_(zrww)]vr[l—(MY+V+2)].

Proof. By putting k =1 in Equ. (2.17), the proof is finished. O]

3. Graphical interpretation

During this part, we will plot graphs of the solutions of Equ. (2.1). So, there are four
particular solutions due to dedicating different values of the parameters have been given
in each graph. In Figure(1), we will take k = 1 and v = 2.1,2.2,2.3,2.4. Similarly, in
Figures(2 —7), we will take k = 2, 3,4, 5,10, 20 and value 1 for all other parameters. Thus,
the effect of k is illustrated.

We observe that, initially when t — 0, then N(t) approaches to zero. the value of N(t)
increases with time and at end tends to infinity as t — oo, for all chosen parameters. So,
we notice that N(t) is an increasing function for 0 < t < oc.

18+t — r=21
— y=22
16 ¥=23
- p=24
1.4 ¢
12f
= 1
=
0.8 |
0.6
0.4
02t
. : . . . .
1 15 2 25 3 3.5 4 45 5

t values

Figure 1: Solution of Equ. (2.1) for k = 1 and various values of y.
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Figure 2: Solution of Equ. (2.1) for k = 2 and various values of y.

03r

el B i
s L B

R
o

0.2571

021

0.15

017

0.056

1 1.5 2 25 3 3.5 4 4.5 5
t values

Figure 3: Solution of Equ. (2.1) for k = 3 and various values of y.
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y=2xr

y=22

L ¥y=23
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015
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011
0.05
0 : T i i ;
1 1.5 2 2.5 3 3.5 4 4.5 5
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Figure 4: Solution of Equ. (2.1) for k = 4 and various values of y.
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Figure 5: Solution of Equ. (2.1) for k = 5 and various values of y.
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Figure 6: Solution of Equ. (2.1) for k = 10 and various values of y.
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¥ =23
e A
0.04
= 003
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0.02
0.011
0 N L . . .
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t values

Figure 7: Solution of Equ. (2.1) for k = 20 and various values of y.

4. Conclusion

In mathematical modeling, kinetic equations are basic equations of mathematical physics
and the natural sciences and describe the continuity of motion of the materials. In this
study, a new solutions of generalized Hadamard fractional Kinetic equation relating to
generalized k-Bessel function were discussed by applying the Mellin transform technique.
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The graphics interpretation of solutions were given as applications of our results. We
deduce that N(t) > 0 for various values of the parameters during different time t. We

can

easily construct varying known and new fractional Kinetic equations due to closed

relationship of the generalized k-Bessel function with many special functions.
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