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Abstract

In this paper, the existence of positive solutions of a class of nonlinear fractional boundary value prob-
lems is considered. Two fixed point theorems are used, namely: Banach Contraction mapping principle and
Leggett-Williams fixed point theorems. The former is used to prove the existence of a unique solution, whereas
the latter is used to prove the existence of at least three positive solutions to the problem. Some examples are
provided to illustrate the two results.
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1. Introduction

In recent years, fractional calculus has evolved as an interesting and an important
area of research. This is as a result of its numerous applications in models of several
phenomena in various fields of science and engineering. Indeed, a number of applications
in areas such as biology, engineering, earthquake prediction, signal processing, dynamical
systems and etc., abound in the literature. For more on the theories and applications of
fractional calculus, see [1, 2, 3, 4, 19] and the references therein.

Owing to the fact, that positive solutions are useful in several applications, various pa-
pers dealing on the existence of positive solutions of differential equations have appeared
in the literature. Most often, such results are obtained using some fixed point theorems as
can be seen in [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and some references therein.

In [16], the existence and uniqueness of positive solutions for the fractional differential
equation, {

Dα
c x(t) −D

β
c x(t) = f(t, x(t)), t ∈ [0, T), 0 < β < α < 1

x(0) = x0,
,
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were studied using some new integral inequalities of Henry- Gronwall type. More recent
study on existence of solutions and positive solutions of fractional differential equations
can be seen in [17, 18, 19, 20].
In the case of this research work, the existence of positive solutions for the nonlinear
boundary value fractional differential equation shall be considered,

cDα
0+x(t) + k

cD
β
0+x(t) + g(t, x(t)) = h(t), t ∈ [0, 1], (1.1)

x(0) = 0, (1.2)

x′(0) =
α

2
x(1), (1.3)

where 0 < β < 1 < α < 2, are real constants, x ∈ C2[0, 1] and cD
γ
0+x(t) is the Caputo

fractional derivative of a function x of order γ, with γ = α,β; k is a negative constant,
g : [0, 1]× [0,∞) −→ R is an L∞− Caratheódory function, h ∈ L

1
β [0, 1].

The rest of the paper is organized as follows: In section 2, some basic terms of frac-
tional calculus and some useful lemmas related to the work will be presented. In section
three, by using the Contraction Mapping Principle, an existence of a unique positive solu-
tion to the problem is established. Equally, existence of at least three positive solutions of
equations (1)-(3) will be proved using the Leggett-Williams fixed point theorem. Lastly, in
section 4, some examples are to be presented to illustrate the obtained results.

2. Preliminaries

For n ∈ N, let

Cn[a,b] =
{
f : [a,b] −→ C,

dnf(x)

dxn
∈ C0[a,b]

}
, (2.1)

where C0[a,b] is the space of continuous functions on [a,b].

Also, let,
E =

{
x ∈ C2[0, 1] : x(t) ⩾ 0, t ∈ [0, 1]

}
, (2.2)

be a cone in a Banach space C2[0, 1] endowed with the norm

∥x∥C2 = ∥x∥∞ + ∥x′∥∞ + ∥x′′∥∞.

Finally, let the nonnegative continuous concave functional θ on E be defined by

θ(x) = min
0⩽t⩽1

x(t).

Definition 2.1[1] Let x be n-th times continuously differentiable function. The Caputo
fractional derivative of a function x, of order α, with lower limit 0 is defined as,

cDα
0+x(t) =

1
Γ(n−α)

∫t
0
(t− s)n−α−1x(n)(s)ds, (2.3)
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with n− 1 < α < n, n = [α] + 1; while the Riemann-Liouville fractional integral of a
function x, of order α > 0, and denoted by Iα0+x(t) is defined by,

Iα0+x(t) =
1
Γ(α)

∫t
0
(t− s)α−1x(s)ds. (2.4)

Observe from equations (6) and (7) that,

cDα
0+x(t) = I

n−α
0+ x(n)(t). (2.5)

Definition 2.2.[1] A map γ is said to be a nonnegative continuous concave functional
on a cone E of real Banach space S, if γ : E −→ [0,∞) is continuous and

γ(tx+ (1 − t)y) ⩾ tγ(x) + (1 − t)γ(y),

for all x,y ∈ E and 0 ⩽ t ⩽ 1.
Similarly, we say that the map ψ is a nonnegative continuous convex functional on a cone
E of a real Banach space S, if ψ : E −→ [0,∞) is continuous and

ψ(tx+ (1 − t)y) ⩽ tψ(x) + (1 − t)ψ(y),

for all x,y ∈ E and 0 ⩽ t ⩽ 1.

Definition 2.3. [21] A function f : [a,b] × R −→ R is said to be a Carathéodory
function if it satisfies the following conditions

• f(t, x) is Lebesgue measurable with respect to t in [a,b],

• f(t, x) is continuous with respect to x on R

A function f(t, x) defined on [a,b]× R is said to be an Lp− Carathéodory function,
p ⩾ 1, if it is a Carathéodory function and ∀r > 0, there exists hr ∈ Lp(a,b), such that
∀x ∈ [−r, r] and ∀t ∈ [a,b], then f(t, x) ⩽ hr(t).

Lemma 2.1. [22] The space ACn[a,b] consists of those and only functions f, which can be
represented in the form

x(t) = Ina+
φ(t) +

n−1∑
k=0

ck(t− a)
k, (2.6)

where φ ∈ L1(a,b), ck(k = 0, 1, 2, · · · ,n− 1) are arbitrary constants.

Lemma 2.2. [21] If x ∈ ACn[a,b] or x ∈ Cn[a,b], then the equality

Iαa+
(cDα

a+
x(t)) = x(t) −

n−1∑
j=0

xj(a)

j!
(t− a)j. (2.7)

holds.
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A particular case, where 0 < β < 1 < α < 2, then equation (10) becomes

Iαa+

cDβ
a+
x(t) = Iα−β

a+
x(t) −

(t− a)α−β

Γ(α−β+ 1)
x(a). (2.8)

Lemma 2.3. If x ∈ C2[0, 1], then x satisfies the equations (1) - (3) if, and only if x satisfies
the Volterra integral equation

x(t) =
1
Γ(α)

∫ 1

0
G1(t, s)[h(s) − g(s, x(s))]ds−

k

Γ(α−β)

∫ 1

0
G2(t, s)x(s)ds,

where

G1(t, s) =

{
αt(1−s)α−1

2−α + (t− s)α−1 if, 0 ⩽ s ⩽ t
αt(1−s)α−1

2−α if, t ⩽ s ⩽ 1
,

G2(t, s) =

{
αt(1−s)α−β−1

2−α + (t− s)α−β−1 if, 0 ⩽ s ⩽ t
αt(1−s)α−β−1

2−α if, t ⩽ s ⩽ 1
.

Proof. Suppose that x ∈ C2[a,b] satisfies equations (1) - (3), then we show that x satisfies
the Volterra integral equation above. By lemma 2.2, we can apply Iαa+

to both sides of (1),
to obtain

Iα0+

(
cDα

0+x(t) + k
cD

β
0+x(t) + g(t, x(t)) = h(t)

)
=⇒ Iα0+(

cDα
0+x(t)) + I

α
0+(k

cD
β
0+x(t)) = I

α
0+ [h(t) − g(t, x(t))]

=⇒ x(t) − x(0) − tx′(0) + kIα−β
0+ x′(t) = Iα0+ [h(t) − g(t, x(t))]

=⇒ x(t) = tx′(0) +
kx(0)tα−β

Γ(α−β+ 1)
− kIα−β

0+ x(t) + Iα0+ [h(t) − g(t, x(t))] (2.9)

Making use of the boundary condition (2) in (3), we have

x(1) = x′(0) −
k

Γ(α−β)

∫ 1

0
(1 − s)α−β−1x(s)ds+

1
Γ(α)

∫ 1

0
(1 − s)α−1[h(s) − g(s, x(s))]ds

=⇒
(

2
α
− 1
)
x′(0) = −

k

Γ(α−β)

∫ 1

0
(1 − s)α−β−1x(s)ds

+
1
Γ(α)

∫ 1

0
(1 − s)α−1[h(s) − g(s, x(s))]ds

=⇒ x′(0) =
α

2 −α

(
−k

Γ(α−β)

∫ 1

0
(1 − s)α−β−1x(s)ds

)

+
α

2 −α

(
1
Γ(α)

∫ 1

0
(1 − s)α−1[h(s) − g(s, x(s))]ds

)
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Substituting the above into (3), we have

x(t) =
αt

2 −α

{
−

k

Γ(α−β)

∫ 1

0
(1 − s)α−β−1x(s)ds+

1
Γ(α)

∫ 1

0
(1 − s)α−1[h(s) − g(s, x(s))]ds

}

−
k

Γ(α−β)

∫t
0
(t− s)α−β−1x(s)ds+

1
Γ(α)

∫t
0
(t− s)α−1[h(s) − g(s, x(s))]ds

=⇒ x(t) =
−k

Γ(α−β)

∫t
0
[
(αt(1 − s)α−β−1

2 −α
+ (t− s)α−β−1]x(s)ds

+
−k

Γ(α−β)

∫ 1

t

αt(1 − s)α−β−1

2 −α
x(s)ds

+
1
Γ(α)

∫t
0
[
αt(1 − s)α−1

2 −α
+ (t− s)α−1](h(s) − g(s, x(s)))ds

+
1
Γ(α)

∫ 1

t

αt(1 − s)α−1

2 −α
(h(s) − g(s, x(s)))ds

Therefore,

x(t) =
1
Γ(α)

∫ 1

0
G1(t, s)[h(s) − g(s, x(s))]ds−

k

Γ(α−β)

∫ 1

0
G2(t, s)x(s)ds,

Thus, the volterra integral equation is satisfied.
On the other hand, suppose that x satisfies the volterra integral equation, then operating
cDα

0+ to both sides of the volterra integral equation, we obtain (1). Equally, it can easily be
seen that the boundary conditions (2) and (3) are satisfied. Hence, the lemma is proved.

Lemma 2.4. ∀t, s ∈ [0, 1], and α− β− 1 > 0, the Green’s function defined in lemma 2.3
satisfies the following :

(i)Gi(t, s) ⩾ 0, i = 1, 2.

(ii) Gi(t, s) ⩽ Gi(1, s), i = 1, 2.

(iii) t(1−s)α−β−1

3 ⩽ Gi(t, s) ⩽
3t(1−s)α−1

2−α , i = 1, 2.

Proof. (i) From the definition of Gi, i = 1, 2, and ∀t[0, 1], we have that

Gi(t, s) ⩾
αt(1 − s)α−β−1

2 −α
⩾ 0

(ii) For s ∈ [0, t], t ∈ [0, 1],

G1(t, s) =
αt(1 − s)α−1

2 −α
+ (t− s)α−1



K.I. Isife / Positive solutions of a class of nonlinear boundary value FDEs 83

⩽
α(1 − s)α−1

2 −α
+ (1 − s)α−1

= G1(1, s)

Also, for s ∈ [t, 1], t ∈ [0, 1],

G1(t, s) =
αt(1 − s)α−1

2 −α

⩽
α(1 − s)α−1

2 −α

= G1(1, s)

Similarly, we can show that G2(t, s) ⩽ G2(1, s),∀t, s ∈ [0, 1].

Therefore, Gi(t, s) ⩽ Gi(1, s), i = 1, 2.

(iii)

Gi(t, s) ⩾
αt(1 − s)α−β−1

2 −α

⩾
t(1 − s)α−β−1

2 −α

⩾
t(1 − s)α−β−1

3(2 −α)

⩾
t(1 − s)α−β−1

3
Equally,

Gi(t, s) ⩽
αt(1 − s)α−1

2 −α
+ (t− s)α−1

⩽
2(1 − s)α−1

2 −α
+ (1 − s)α−1

⩽
2(1 − s)α−1

2 −α
+

(1 − s)α−1

2 −α

=
3(1 − s)α−1

2 −α

Lemma 2.5. [18] Let E be a cone in a real Banach space C2[0, 1] Ee = {x ∈ E : ∥x∥C2 ⩽ e} , θ
is a nonnegative continuous concave functional on E such that θ(x) ⩽ ∥x∥C2 , ∀x ∈ Ēe,
and E(θ,d, f) = {x ∈ E : d ⩽ θ(x), ∥x∥C2 ⩽ f} . Suppose that T : Ēe −→ Ēe is completely
continuous and there exist positive constants 0 < c < d < e ⩽ f such that

(i) {x ∈ E(θ,d, f) : θ(x) > d} ̸= ∅ and θ(T(x)) > d ∀x ∈ E(θ,d, f)
(ii) ∥T∥C2 ⩽ c for x ⩽ c
(iii) θ(Tx) > d for some x ∈ E(θ,d, e) with |T(x)∥C2 > f.
Then T has at least three fixed points x1, x2, x3 with ∥x1∥C2 < c, d < θ(x2), c < ∥x3∥C2

with θ(x3) < d.



K.I. Isife / Positive solutions of a class of nonlinear boundary value FDEs 84

Lemma 2.6. [22] ((Banach’s contraction principle) Let (X,d) be a complete metric space,
and consider a mapping J : X −→ X, which is strictly contractive, i.e.,

d(Jx, Jy) ⩽ Ld(x,y), ∀x,y ∈ X,

for some (Lipschitz constant) L < 1. Then,

1. The mapping J has one, and only one, fixed point x⋆ = J(x⋆);
2. the fixed point x⋆ is globally attractive, i.e.,

lim
n−→∞ Jnx = x⋆;

3.
d(Jnx, x⋆) ⩽ Lnd(x, x⋆), ∀n ⩾ 0, ∀x ∈ X;

4.

d(Jnxn, x⋆) ⩽
1

1 − L
d(Jnx, Jn+1x), ∀n ⩾ 0, ∀x ∈ X;

5.
d(x, x⋆) ⩽

1
1 − L

d(x, Tx), ∀x ∈ X

Lemma 2.7. (Hölder inequality)[20] Assume that p,q ⩾ 1, and 1
p + 1

q = 1. If f ∈ Lp(J,X),g ∈
Lq(J,X), then for 1 ⩽ p ⩽ ∞, fg ∈ L1(J,X) and

∥fg∥ ⩽ ∥f∥Lp∥g∥Lq ,

where J = [0, 1].

3. Existence results

First, By applying the standard contraction mapping principle, the existence of a unique
positive solution to the class of equations (1)-(3)is proved.

Theorem 3.1. Let E be defined as in (5) and suppose that,

|g(t, x(t)) − g(t,y(t)))| ⩽ |k||(x(t) − y(t)|,

and h− g is a nonnegative function, where k is a negative constant as defined in (1), with

| k |<
(2 −α)Γ(α−β)

6
.

Then, the problem (1)-(3) has a unique solution on E.

Proof: Define T : E −→ E by

Tx(t) =
1
Γ(α)

∫ 1

0
G1(t, s)[h(s) − g(s, x(s))]ds−

k

Γ(α−β)

∫ 1

0
G2(t, s)x(s)ds.
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First, observe that for each x ∈ E,

Tx(t) =
1
Γ(α)

∫ 1

0
G1(t, s)[h(s) − g(s, x(s))]ds−

k

Γ(α−β)

∫ 1

0
G2(t, s)x(s)ds

⩾
1
Γ(α)

∫ 1

0

t(1 − s)α−β−1

3
(h(s) − g(s, x(s)))ds+

|k|

Γ(α−β

∫ 1

0

t(1 − s)α−β−1

3
x(s)ds

⩾ 0, 0 ⩽ t, s ⩽ 1.

Thus, T is well-defined.

Next,

|Tx(t) − Ty(t)| ⩽
1
Γ(α)

∫ 1

0
G1(t, s)|g(s, x(s)) − g(s,y(s))|ds+

1
Γ(α−β)

∫ 1

0
G2(t, s)|x(s) − y(s)|ds

⩽
|k|

Γ(α)

∫ 1

0

3(1 − s)α−1

2 −α
|x(s) − y(s)|ds+

|k|

Γ(α−β)

∫ 1

0

3(1 − s)α−1

2 −α
|x(s) − y(s)|ds

⩽
2|k|

Γ(α−β)
∥x− y∥

∫ 1

0

3(1 − s)α−1

2 −α

⩽
2|k|

Γ(α−β)
∥x− y∥ 3

α(2 −α)

⩽
6|k|

(2 −α)Γ(α−β)
∥x− y∥.

This implies that,

∥Tx− Ty∥C2 ⩽
6|k|

(2 −α)Γ(α−β)
∥x− y∥C2 ,

with 6|k|
(2−α)Γ(α−β) < 1.

Therefore, by the Banach Contraction principle of theorem 2.6, it has been proved that
T , has a unique fixed point on E, which is a solution of the problem.

Next, applying the famous Leggett-Williams fixed point theorem of lemma 2.5, the
existence of at least three positive solutions to the problem is obtained. Before proceeding,
here is a theorem that is necessary for the proof of the next result.

Theorem 3.2. Let E be a cone in a Banach space as defined by (5). Then, the operator
T : E −→ E is completely continuous.

Proof. First, define a map T : E −→ E by

Tx(t) =
1
Γ(α)

∫ 1

0
G1(t, s)[h(s) − g(s, x(s))]ds−

k

Γ(α−β)

∫ 1

0
G2(t, s)x(s)ds.

Then, from theorem 3.1, the map T is well-defined.
Next, it suffices to show that the operator T : E −→ E is continuous. Pick any sequence
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xn ∈ E such that xn −→ x ∈ E, we show that ∥Txn − Tx∥C2 −→ 0.
Now,

|Txn(t) − Tx(t)| ⩽
1
Γ(α)

∫ 1

0
G1(t, s)|g(s, xn(s)) − g(s, x(s))ds

+
|k|

Γ(α−β)

∫ 1

0
G2(t, s)|xn(s) − x(s)|ds,−→ 0 as n −→ ∞.

This implies that,
∥Txn − Tx∥C2 −→ 0,

as n −→ ∞. Therefore, T is continuous on E. Next, it is required to show that T maps
bounded sets of E into bounded sets in E.
Now, let

V = {x ∈ E : ∥x∥ < M} ,

then we show that ∥Tx∥C2 < L, for some positive constants M,L.
Thus,

|Tx(t)| ⩽
1
Γ(α)

∫ 1

0
G1(t, s)|h(s) − g(s, x(s))|ds+

|k|

Γ(α−β)

∫ 1

0
G2(t, s)|x(s)|ds

⩽
1
Γ(α)

∫ 1

0

3(1 − s)α−1

2 −α
|h(s) − g(s, x(s))|ds+

|k|

Γ(α−β)

∫ 1

0

3(1 − s)α−1

2 −α
|x(s)|ds

⩽
3

(2 −α)Γ(α)

∫ 1

0
(1 − s)α−1|h(s) − g(s, x(s))|ds+

3M|k|

(2 −α)Γ(α−β)

∫ 1

0
(1 − s)α−1ds

⩽
3

(2 −α)Γ(α)

(∫ 1

0
|h(s) − g(s, x(s))|

1
βds

)β(∫ 1

0
(1 − s)

α−1
1−βds

)1−β

+
3M|k|

(2 −α)Γ(α−β)

∫ 1

0
(1 − s)α−1ds

⩽
3

(2 −α)Γ(α)(γ+ 1)1−β
∥h− g∥

L
1
β
+

3M|k|

α(2 −α)Γ(α−β)

Therefore,
∥Tx∥C2 ⩽ L,

with L = 3
(2−α)Γ(α)(γ+1)1−β ∥h− g∥

L
1
β
+

3M|k|
α(2−α)Γ(α−β)

Next, for any t1, t2 ∈ [0, 1], with t1 < t2 and x ∈ E, we have that

|Tx(t2) − Tx(t1)| ⩽
1
Γ(α

∫ 1

0
G1(t2, s) −G1(t1, s)|h(s) − g(s, x(s)ds

+
|k|

Γ(α−β

∫ 1

0
G2(t2, s) −G2(t1, s)|x(s)|ds −→ 0 as t1 −→ t2.

This shows that T is equicontinuous on E.
Therefore, The operator T : E −→ E is a completely continuous operator.
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Theorem 3.3. Suppose that α− β− 1 > 0 and the assumptions of Theorem 3.2 hold. If
there exist constants 0 < c < d < e such that,

1.

c >
3α∥h− g∥

L
1
β

(γ+ 1)1−β (α(2 −α)Γ(α−β) − 3|k|)
,

provided that α(2 −α)Γ(α−β) − 3|k| > 0.

2. for some ξ ∈ (0, 1),

|k| >
3Γ(α−β+ 1)

ξ

Then our problem has at least three positive solutions x1, x2, x3, with ∥x1∥C2 < c, d <

θ(x2), c < ∥x3∥C2 , with θ(x3) < d,

Proof. It suffices to show that the conditions of lemma 2.5 are satisfied. Supposing that
x ∈ Ēc, then ∥x∥ ⩽ c.

|Tx(t)| ⩽ |
1
Γ(α)

∫ 1

0
G1(t, s)(h(s) − g(s, x(s))ds+

|k|

Γ(α−β)

∫ 1

0
G2(t, s)x(s)ds|

⩽
1
Γ(α)

∫ 1

0

3(1 − s)α−1

2 −α
|h(s) − g(s, x(s)|ds+

|k|

Γ(α−β)

∫ 1

0

3(1 − s)α−1

2 −α
|x(s)|ds

⩽
3

(2 −α)Γ(α)

∫ 1

0
(1 − s)α−1|h(s) − g(s, x(s)|ds+

3c|k|
(2 −α)Γ(α−β)

∫ 1

0
(1 − s)α−1ds

3
(2 −α)Γ(α)

(∫ 1

0
|h(s) − g(s, x(s))|

1
βds

)β(∫ 1

0
(1 − s)

α−1
1−βds

)1−β

+
3c|k|

α(2 −α)Γ(α−β)

⩽ x(0)(1 +
|k|tα−β

Γ(α−β+ 1)
) + x′(0)t+

|k|

Γ(α−β)

∫t
0
(t− s)α−β−1|x(s)|ds

+
1
Γ(α)

∫t
0
(t− s)α−1|h(s) − g(s, x(s))|ds

It follows from Hölder’s inequality that

|Tx(t)| ⩽ x(0)
(

1 +
|k|

Γ(α−β+ 1)

)
+ x′(0) +

|k|c

Γ(α−β)

∫t
0
(t− s)α−β−1ds+

1
Γ(α)

(∫t
0
|h(s) − g(s, x(s))|

1
βds

)β(∫t
0
(t− s)

α−1
1−βds

)1−β

⩽ x(0)
(

1 +
|k|

Γ(α−β+ 1)

)
+ x′(0) +

c|k|

Γ(α−β+ 1)
+

1
Γ(α)

∥h− g∥
L

1
β

1
(γ+ 1)1−β

⩽ c,

by condition (1) of theorem 3.3 This implies that,

∥Tx∥C2 ⩽ c.
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Then by theorem 3.2, T : Ēc −→ Ēc is completely continuous. Equally, employing the
same argument, it follows from condition (1) that if x ∈ Ēd then ∥Tx∥C2 ⩽ d.

Define,
G(θ,d, e) = {x ∈ E : d ⩽ θ(x), ∥x∥C2 ⩽ e} ,

and let

x(t) =
d+ e

2
, t ∈ [0, 1],

then we show that
x(t) ∈ G(θ,d, e).

We observe that x(t) as defined is nonnegative and so is contained in E.
Therefore,

|x(t)| =
(d+ e)

2

=
e+ e

2
= e.

=⇒ ∥x∥C2 ⩽ e

Taking θ(x) = d+e
α , we have that

θ(x) ⩾ d

Thus,
{x ∈ G(θ,d, e) : θ(x) > d} ̸= Φ

.
Next,

θ(Tx) = min
ξ⩽t⩽b

|Tx(t)|

⩾ min
ξ⩽t⩽b

Tx(t)

⩾
1
Γ(α)

∫ 1

0
G1(t, s)(h(s) − g(s, x(s))ds+

k

Γ(α−β)

∫ 1

0
G2(t, s)x(s)ds

⩾
−ek

3Γ(α−β)

∫ 1

0
t(1 − s)α−β−1ds

⩾
ξek

3Γ(α−β+ 1)
(1 − s)α−β |10

=
eξ|k|

3Γ(α−β+ 1)
> e

for some ξ ∈ (0, 1)
=⇒ θ(Tx) > e
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for x ∈ G(θ,d, e).
Therefore, by lemma 2.5, our problem has at least three positive solutions x1, x2, x3, with

∥x1∥C2 < c and d < θ(x2), c < ∥x3∥C2 , with θ(x3) < d.

4. Some Examples

Example 1. Any well-posed boundary value problem formed by the fractional differ-
ential equation

cD
π
2
0+x(t) −

e

15π

c
D

e
4
0+x(t) + (t−

e

4
)(x2(t) + 6)

−1
2 = t (4.1)

Proof. To see this, it suffices to show that example (4.1) satisfies the conditions of theorem
3.1. First, we observe that g(t, x(t)) = (t− e

4 )(x
2(t) + 6)

−1
2 is an L∞- Carathéodory func-

tion and equally Lipschitz continuous, since it is continuously differentiable with respect
to x.
Also,

|k| =
e

15
⩽

(2 −α)Γ(α−β)

6
= 0.07695697757

Equally,
h(t) − g(t, x(t)) = t− (t−

e

4
)(x2(t) + 6)

−1
2 ⩾ 0

Thus the conditions of theorem 3.1 is verified, hence the proof.

Example 2.
The equation

cD
3
2
0+x(t) −

1
5

c

D
1
3
0+x(t) + 1 = sin

4
3 x(t) (4.2)

with the conditions
x(0) = 0, x′(0) =

3
4
x(1) (4.3)

has at least three positive solutions x1, x2, x3, with

∥x1∥C2 < c and d < θ(x2), c < ∥x3∥C2 , with θ(x3) < d.

Proof. To see this, from theorem 3.2, the operator

Tx(t) =
1
Γ( 3

2)

∫ 1

0
G1(t, s)[1 − sin

4
3 x(t)]ds+

1
5Γ( 7

6)

∫ 1

0
G2(t, s)x(s)ds, (4.4)

where

G1(t, s) =

{
3t(1−s)1

2 + (t− s)
1
2 if, 0 ⩽ s ⩽ t

3t(1−s)1

2 if, t ⩽ s ⩽ 1
,

G2(t, s) =

{
3t(1 + s)

1
6 + (t− s)

1
6 if, 0 ⩽ s ⩽ t

3t(1 − s)
1
6 if, t ⩽ s ⩽ 1
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is completely continuous.
Next, from equation (15), α = 3

2 , β = 1
3 , k = −1

5 then, we estimate ∥h− g∥
L

1
β

.
Now,

∥h− g∥
L

1
β
=

(∫t
0
(1 − sin

4
3 x(s))3ds

) 1
3

=

(∫t
0
(cos

4
3 x(s))3ds

) 1
3

=

(∫t
0

cos4 x(s)ds

) 1
3

.

We recall from trigonometric identities that

cos4 x(t) =
3 + 4 cos(2x(t) + cos(4x(t)

8

This implies that

∥h− g∥
L

1
β
=

(∫t
0

3 + 4 cos(2x(s) + cos(4x(s)
8

ds

) 1
3

=

(
3t+ 2 cos(2x(t)) + 1

4 cos(4x(t)) − 9
4

8

) 1
3

⩽ 3

√
3
8

.

So,

0 ⩽ ∥h− g∥
L

1
β
⩽ 3

√
3
8

.

Also,
3α∥h− g∥

L
1
β

(γ+ 1)1−β (α(2 −α)Γ(α−β) − 3|k|)
⩽

3 × 3
2 ×

3
√

3
8

( 7
4)

2
3
[ 3

4 × Γ(
7
6) −

3
5

]
=

9
4 ×

3
√

3

( 7
4)

2
3 × 0.0957895002

=
3.245061532
0.1391051706

= 23.32811583.

Therefore, any c ⩾ 23.32811583 >
3α∥h−g∥

L
1
β

(γ+1)1−β(α(2−α)Γ(α−β)−3|k|) will satisfy the first condi-
tion of theorem 3.3.
For the second condition of theorem 3.3, we need some ξ ∈ (0, 1) such that

|k| >
3Γ(α−β+ 1)

ξ
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=⇒ 1
5
>

3Γ( 13
6 )

ξ

=⇒ ξ <
1

16.23508834

So, any ξ < 1
16.23508834 will suffice. Thus, by Theorem 3.3, the problem has at least three

positive solutions x1, x2, x3, with

∥x1∥C2 < c and d < θ(x2), c < ∥x3∥C2 , with θ(x3) < d.
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