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Abstract

Solving the Schrédinger equation (SE) for the wavefunction and binding energy levels of the diatomic
molecular system is essential for modeling its structure and analyzing its spectral properties, as the complete
wave function inherently involves all the necessary information to analyze its physical properties. In contrast,
the obtained energy levels reveal its spectroscopic characteristics. In this work, the Nikiforov-Uvarov (NU)
analytical method is brought into the domain of Gohar fractional calculus (GFC). We use the Gohar fractional
NU (GFNU) method to solve the fractional hyper-radial SE for the binding rovibrational energy spectra of
some homo-nuclear and hetero-nuclear diatomic molecules (DMs) in the molecular Kratzer model for arbi-
trary values of the vibrational and rotational quantum numbers. Graphical analysis is used to explore the
effect of the fractional parameter on the obtained diatomic energy levels and their corresponding normalized
hyper-radial wave functions. Interestingly, the fractional parameter was found to have a significant effect on
the diatomic structure and spectral properties. The graphical behavior of the Kratzer potential (KP) model
and its modified version was analyzed for various DMs. It was observed that the characteristic features of
both potential models were affected by the variation of the fractional parameter. We also investigated the
dependence of the diatomic energies in both potentials on dimensionality, equilibrium inter-nuclear distance,
reduced mass, and quantum numbers. This study provided entirely new results for the energy levels of HCL,
LiH, ScH, Hy, Oy, and I, DMs in the modified Kratzer potential (MKP) that had not been previously reported
in the literature.

Keywords: Gohar Fractional Effect. Nikiforov-Uvarov Method. Schrodinger Equation. Analytical Solutions.
Kratzer Potential

1. Introduction

The analytical techniques for solving SE are critical in analyzing the spectroscopic
characteristics, the electronic structure, and the energetic properties of the DMs. The
literature presents several analytical techniques for solving SE, including the asymptotic
iteration method (AIM) [1], the super-symmetric Quantum Mechanics (SUSYQM) [2], the
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NU method [3], the Exact Quantization Rule (EQR) [4], and the Laplace Transform Ap-
proach (LTA) [5].

Diatomic molecular vibrational and rotational spectroscopy is a critical field of research
in chemistry and molecular physics. Several authors in contemporary literature have ex-
amined the bound-state solutions of SE for the DMs [6-9] to gain a deeper understanding
of their physical features and chemical characteristics. Several theoretical potential mod-
els have been proposed for the diatomic structures, but only a limited number of these
models allow for exact analytical solutions of SE for all values of the vibrational and rota-
tional quantum numbers. These models include Morse [10], Yukawa [11], Woods-Saxon
[12], Hua [13], Mie-type [14] and Pseudo-harmonic [15] potentials.

In 1920, A. Kratzer [16] introduced an "exactly solvable" potential model for the di-
atomic structure to investigate the ro-vibrational energy spectra of the DMs. The KP takes
the form

2
V(r) =—D, < — e) , (1.1)

where D. is the dissociation energy between two atoms in the DM separated by an equi-
librium inter-nuclear distance r.. A recent modification has been made to KP model [17]
by adding the dissociation energy to it, resulting in a shift by amount D. . The MKP takes
the form:

T

2
V(r) = D, (T_re> . (1.2)

The KP is a combination of the Coulomb potential, which exhibits a long-range attrac-
tive effect, and a centrifugal potential barrier that is associated with the electronic kinetic
energy and possesses a short-range repulsive effect. Their superposition creates an effec-
tive molecular potential to explore various aspects of the DMs, including their molecular
structure, inter-nuclear vibration, chemical interactions, and ro-vibrational energy spec-
tra. Z. Yalcin et al. [18] demonstrated that the KP well exhibits greater sharpness and
depth in comparison to the purely Coulombic potential well. With the KP, Shi-hai Dong
and Gus-hua Sun [19] were able to solve the hyper-radial SE and study the impact of
dimensionality on the obtained energy spectra. As a result of the remarkable precision
with which the KP and its modified version model the diatomic molecular structures, S.
M. Ikhdair and R. Sever [20] used the EQR to solve the hyper-radial SE with KP and MKP
for various DMs. The KP and its modified form have been investigated through the AIM
[21], the ansatz method [22], and the polynomial solutions [23].

In recent years, fractional calculus has come to be recognized for its vast potential
to offer more accurate models for natural phenomena than what was achievable with
ordinary integer-order calculus. In the literature, many fractional derivatives have been
proposed, expanding the scope of applicability of fractional calculus. Among the fractional
derivatives introduced thus far, the Riemann-Liouville derivative [24], the Caputo deriva-
tive [24], and the conformable derivative (CD) [25] are the most often used fractional
derivatives in applications. Al-Raeei and El-Daher used the Riemann-Liouville fractional
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derivative to numerically solve the space-dependent fractional SE for various potentials,
including Lennard-Jones potential [26], Coulomb potential [27], and Morse potential
[28]. With the CD, Hadi Rezazadeh et al. solved the conformable Schrodinger-kdv equa-
tion and obtained the traveling wave solutions using the G’/G-expansion technique. M.
Bilal and J. Ahmad [29] obtained exact optical soliton solutions of the generalized (2+1)-
dimensional conformable fractional SE by means of three novel integration norms [30],
Hale Y. Karayer et al. [31] used the CD to generalize the NU method and introduced the
conformable fractional NU method to solve SE with three different "exactly solvable" po-
tentials. M. M. Hammad et al. [32] used the Conformable fractional NU method to solve
the conformable fractional Bohr Hamiltonian with the KP for the tri-axial nuclei.

A. A. Gohar et al. [33] have recently introduced a novel, local, and well-behaved frac-
tional calculus. Its locality imposes simplicity and accuracy in modeling fractional order
systems, and its fractional derivative possesses more properties compared to all the pre-
viously defined fractional derivatives. In this work, we aim to study the effect of Gohar
fractional parameter on the structure and ro-vibrational energy spectra of some homo-
nuclear and hetero-nuclear DMs. To this end, we formulate the NU method in the context
of GFC and apply the GFNU method to solve the hyper-radial fractional SE with the molec-
ular KP and its modified version. This work is structured as follows: Section 2 presents the
basic definition and essential properties of the GFD, which will be subsequently used in our
investigation, along with the formulation of the GFNU technique. In Sect. 3, the bound-
state energy spectra are obtained, and their corresponding normalized hyper-radial wave
functions are analytically formulated in a closed form by solving the hyper-radial Gohar
fractional SE by means of the GFNU method for the KP and MKP. Sect. 4 presents numer-
ical computations and graphical representations of the ro-vibrational energy spectra for
certain DMs. Finally, our work is concluded in Sect. 5 with a summary and conclusions.

2. Mathematical tools

2.1. Overview of Gohar Fractional Calculus

Definition 2.1.1. Given a function f : [0,c0) — R, the GFD of f of order «, denoted by
G, is defined by

Guf(x) = Aligo i[f(x—k In (14 Axg(e, n)x~ %)) —f(x)],

r
forx >0,c€ (0,1),n € R",g(e,n) = ﬁ

Theorem 2.1.1. For « € (0,1],n € R™. Suppose that f, ¢ : [0,00) — R are G «-differentiable
functions at x > 0. Then they satisfy the following properties

(D Linearity: GouAf+ ) (x) =AGLT(x) + uGs@(x); A, n e R.
(II) Product rule: Guo(fe)(x) = f(x)Gx@(x) + @(x)Gf(x).

(IID Quotient rule: G« (f/@)(x) = [@(x)Guf(x) — f(x)Ga@(x)]/9%(x), @(x) # 0.
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(IV) Chain rule: Gulfo@)(x) =Gu (@(x)) ' (@(x)).

(V) Derivative of a constant: Gx(c)=0,ceR.

Theorem 2.1.2. If f: [0,00) — R is a G «- differentiable function at x > 0, then
Gaf(x) = glo,m)x'~%f'(x),

for « € (0,1],n1 € R™.

Definition 2.1.2. For x > 0, if f is a function defined on (0, x], then the Gohar fractional
integral of f of order «, denoted by T%, is defined by

'm—o+1) JX f(t)
I'n) o ti=«

T (x) = dt,

where x € (0,1),n € R*.

Theorem 2.1.3. For x > 0, If f is a continuous T*-integrable function, then
Gu (T¥(x)) = f(x),

T*(Gu (f(x))) = f(x) —1(0),
where « € (0,1),1 € R".

2.2. The GENU method

The GFNU method can be applied to solve the second-order differential equations of
hypergeometric type, which commonly arise in time-independent problems, by means of
orthogonal polynomials. It provides us with an exact solution of the SE for the exactly
solvable potentials. In spherical coordinates, the SE reduces to a typical hypergeometric-
type equation with the following form:

W) + TG () + )
o(x) 0(x)
where {(x) is a hypergeometric-type function, o(x) and &(x) are polynomials of degree at
most 2«, T(x) is a polynomial of degree at most «.
With the assumption

P(x) =0, (2.1

P(x) = e(x)x(x), (2.2)
we write (2.1) as
= (2) ~ ~
Gy (x) + ZGOL(P(X) +T(X)] Gux(x) + Ga @(x) n T(x) Go@(x) n GZ(X) (x) = 0.
o(x) o(x) ®(x) o(x) @(x) 0 (x)
(2.3)

The equation above can be reduced by expressing the coefficients of Gyx(x) and x(x) in
terms of some newly defined functions. To this end, the coefficient of G, x(x) is taken as

Goupld) T T(x)
2ol o) o)’ (24)
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or in the more compact form

= (2.5)

where ,
m(x) = E[TX —1(x)] (2.6)

and t(x) are functions of degree at most «.The term fo )(p(x) /@(x) in the coefficient of
X (x) can be written as

G o(x) Go@(x) Ga@(x)) 7i(x) m(x)
cp(x):G“( o) )*( o) ) :G<u>+<m> - @7

With the aid of (2.5), the coefficient of x(x) reduces to the more compact form;

(2) - ~ ~
Ga @)  T(x) Galx)  5(x) _ 5(x)

= , 2.8
o) ol el o2 | 02] -
where
F(x) = &(x) + 72 (x) + 1t(x)[E(x) — Go0(x)] + 0(x)Ggmt(x). (2.9
Consequently, (2.3) reduces to the hypergeometric-type equation
(2) T(x) Gx) oy
Ga'x(x)+ o) Gax(x) + GZ(X)X(X) =0. (2.10)
If 6(x) is divisible by o(x), i.e.,
G(x) = Ao(x), (2.11)
we rewrite (2.10) as
G(x)Gg)x(x) +1(x)Gax(x) +Ax(x) =0, (2.12)

where A is a constant.

The function 7t(x) is determined by comparing (2.9) with (2.11), and then a quadratic
equation for 7t(x) is obtained as follows,

7 (x) + [F(x) — G o(x)]7(x) + &(x) — ko(x) =0, (2.13)

where
k=A—Gum(x). (2.14)

Its roots are given by

~ ~ 2
g = Geo) =0 \/ (S0 Y o sre. )

2

For 7t(x) to have a maximum first degree, the expression under the radical must have a
zero discriminant. By setting the discriminant equal to zero, we obtain a quadratic equa-
tion for k , which can be solved algebraically to get the possible values of k. Following
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the determination of k, we determine 7t(x), T(x) and A by using (2.15), (2.6), and (2.14),
respectively.

For the generalized solutions, we differentiate (2.12) n times in the Gohar fractional sense
to obtain a recurrence relation via induction. To this end, we G, differentiate (2.12) to
get

o(x)G& Vi (x) + 11 (x)Gavi (x) + u1vi(x) =0, (2.16)

where Gyx(x) = v1(x),T1(x) = Ggo(x) +T(x) and w1 = G4t(x) +A. T1(x) is a function
of maximum « degree and p; is a parameter that does not depend on x. By means of
induction, using vn (x) = Gg....GoX(x) = GVx(x), we have;

0(%) GV (%) + T ()G oV (x) + HnVn (x) =0, (2.17)

while the recurrence relations for T, (x) and w,, are

Tn(x) = nGxo(x) + T(x), (2.18)
Un = %G&Z)O‘(X) +nGytT(x) +A. (2.19)

When p,, =0, (2.19) becomes
An = —we&%(x) —nGat(), (2.20)

and then (2.12) has a particular solution of the form x(x) = x(n, «)(x) which is a func-
tion of degree n«.The eigenvalues of (2.12) are obtained by equating (2.14) and (2.20),
and the eigenfunctions x(n, «)(x) are obtained by multiplying (2.12) and (2.17) by the
appropriate weight functions p(x) and pn, (x), respectively, thus they can be rewritten as

Galp(x)o(x)Gax(x)] +Ap(x)x(x) =0, (2.21)
Gulp(x)o(x)GaVn(X)] + tnpn(x)vn(x) =0, (2.22)
where the weight functions p(x) and p, (x) obey the differential equations
Gulp(x)o(x)) = p(x)T(x), (2.23)
Gulpn(x)o(x)) = pn(x)Tn(x). (2.24)
If x is a function of degree na«, that is, X = Xxn,«(x), we have

V(%) = G xm (%), (2.25)

vn(x) = G‘(Xn)xn,a(x) = const. (2.26)
Finally, the eigenfunctions xn «(x) are obtained explicitly by the fractional Rodrigues for-
mula
A A
Xna(d) = G (pn(x) = S5 G (6™ (X)p(x),m =0,1,2,..., (2.27)
p(z) p(x)

where A,, is a normalization constant.
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3. Analytical solutions of the hyper-radial SE with KP and MKP via GFNU method

The Hyper-radial SE with a given sphyrically symmetric potential V(r) is of the form

d?P(r) N-—1dy(r) 2
dr2? + T dr + h2

Le+N—2)

(E- V() - =

Y(r) =0, 3.1

where n is the radial (vibrational) quantum number, { is the orbital angular momentum
(rotational) quantum number, r is the inter-nuclear distance, V(r) is the central potential
energy function, E denotes the energy spectrum, p, i, N are the reduced mass, the reduced
planck’s constant, and the dimensionality, respectively.

The fractional form of the hyper-radial SE is given by changing integer orders with frac-
tional orders in (3.1) as follows

N—-1 2 (e+N—-2
62w+ 2L eapm + | 2 E—vi) - L ym =0, 6o
T h T2%
A generalized form of the Kratzer potential is defined as
Q Q
V(r) = Qo+ TZ—; - T—j Q1 = DX, Q) =2Ders, 1 € (0,00), (3.3)

where the KP is obtained for Qg = 0 and the MKP is obtained for Oy = D.. Substituting
(3.3) into (3.2) gives

W) + L Gath (1) + g 0P QT Qhp(r) =0, (3.4
where o o o
Q, = @(Qo —EF), 91 = ﬁQZ' Qo = ?Ql +0L+N-2). (3.5)
By comparing (3.4) with (2.1), we obtain
F(r)=N—1, o(r) =%, §(1r) = —Qr?** + Q7% — Qp. (3.6)

By means of (3.6) and (2.15), 7t(r) is given by

(r) xg(om) — (N—1) i¢gzrza+(k_91)ra+ ((ocg(oc,n)(Nl))z +Qo>,

2 4
3.7)

By imposing the condition that the discriminant of the expression under the radical of
(3.7) must be equal to zero, the two possible roots of k are determined to be

_ _ 2
kizgliz\/@\/(“g(“’”)4(N U o, (3.8)

Inserting (3.8) into (3.7) gives

— _ 2
xg(o,m) — (N—1) N /Qor® + \/(ocg(oc,n)4 (N=1))2 | Q k=ky 5.9
2 Vit RpyELTERIEESS TN R

m(r) =
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To obtain a physically valid solution, it is necessary to select 7t(r) in such a way thatG ,t(r) <
0. Accordingly, the negative sign in (3.9) is selected, and the function 7t(r) becomes

n(r) = J9leon) ZN=1) (@r“— \/(“9(“’”) —(N-1))? +Q0) k=k_. (3.10)

2 4

Therefore, the function t(r) is defined as

elr) = (oxglam +/ogla,m) (V- DR 420 ) <20/, @D

And the expressions for A and A,, are obtained to be

A=0Q — <ocg(oc,n) +2\/(°‘9(°"“) < N=D? | Qo> Vv, (3.12)
An :2nag(a,n)@. (3.13)

Equating (3.12) and (3.13), the diatomic energy spectrum formula in the N-dimensional
space takes the form

2
Eoc,T[],N _ —O—O . Zj QZ
n, 2 4
W\ @0+ Daglogn) /4000 +N—2) + (aglam) — (N - 1)) + 20y
(3.14)
Now we determine the corresponding normalized hyper-radial wave functions \(r) in
terms of the orthogonal associated Laguerre polynomials by expressing {(r) as

P(r) = o(r)x(7). (3.15)

Inserting the functions 7t(r) and o(r) into (2.5), we obtain the fractional logarithmic
derivative

Gaolx) 1 [ag(oc,n)—(N—l)_(@ra_\/(ocg(oc,n)—(N—l))2+Qo)

ox) o« 2 4

(3.16)

using the properties of the GFI, Definition 2.1.2 and Theorem 2.1.3, we have

g(olm) (ag(oc,ng(N1)+\/(<xg(zx,n)4(3\f1))2+:§Q1+e(@+N_2)> _,/%(QofE)ro‘
@(r) =Pr e s . (3.17)
The weight function p(x) is obtained by means of (2.23) as
1 112 o2 2,/ 28 (Qp—E)r

o(1) :rg(cx,n)\/(ocg(tx,n) (N—=1)) +4(€(£+N 2)+th1>e, hag[“rn) . (3.18)
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Inserting (3.18) into (2.27), we obtain the function x(x) as follows

2u
O S S TR N i L

X(T) = /\nrg(mn xg(an)

2 %(QWE)M (3.19)

—(N=1))2+4((e+N=-2)+ 2O
Lt (an)\/(cxg(%ﬂ) (N=1))2+ ( (N=2)+55 1)67 glom)

g

forn=0,1,2,3,..., where A,, are the normalization constants.

Comparing (3.19) with the fractional form of the Rodrigues formula for the orthogonal
associated Laguerre polynomials [34]

X Ye

LY (x) = ~——Gg (x" Ve ™), (3.20)
n.
With
_ 1 a2 210~

An = x=br%5= watam V2 (Qo—E), (3.21)

1 2u
Y = (ocg(oc,n)—(N—l))z—HL(€(€+N—2)+2Q1> (3.22)

g(oym) h

x(r) can be expressed in terms of the associated Laguerre polynomial as follows
x(r) =Ly (6r%) (3.23)
Inserting (3.17) and (3.23) into (3.15), P (r) takes the form

w+ag(an)—(N-1) 51
P(r) =Pr 2g(eon) e 2 LY(86r%) (3.24)
where
8
= \/4€(€+N—2)+(ocg(oc,n)—(N—1))2 uﬂl, (3.25)

and ‘P is the normalization constant to be determined by means of the fractional normal-
ization condition

! J ! (3.26)
Q(CXIT]) 0 “)

or equivalently,

[e'e] - w+ag(an)—(N-—1) N
| o0 D (p)Pdp = arg(omsl ™ Satmm )

0

,p =0T (3.27)
The normalization constant 3 is determined by the generalized Coulomb-like integral [35]

IR (x) = ro e XxVHP (LQ') (X))z dx
0

Fv+n+1)
n+1

Fm—j—pIriv+p+j+1)
—BIT(v+i+DIrG+DIr(n—j+1)°

(3.28)

“I\’lﬁ
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where Re(v+p+1) > 0.

For our purpose, the value of 3 is equal to 1, and v = N —2 + w+“9052‘&)/;)m_” Tt

is restricted to only two nonzero terms, (for j = n—1 and j = n) in the summation (3.28)
due to the presence of gamma functions with negative integers. Inserting the obtained
value g1 ,(x) = Q“*“’Jrr(lglz(l")*“*l) into the normalization condition (3.27), the normal-
ization constant ‘B is obtained as

(3.29)

B ag(o,m)dNT(n+1)
¥ = Cn4+v+1)In+v+1)

Therefore, the normalized hyper-radial wave functions for the generalized KP are defined
by

Jaglam) e 2LY

_ ag(oyn)dNT(n+1)  wrsglan-en
ie) = \/(2n+v+1)r(n+v+1)p (p), (3.30)

4. Results and Discussion

In this section, we analyze the diatomic binding energies and wavefunctions in the KP
and MKP models numerically and graphically under the effect of the fractional parameter
o in N-dimensional space.

Figure 1 illustrates the KP and MKP for various DMs. Their graphical behavior reveals
the nature of the chemical bond and the molecular behavior at r = r., where the two
atoms of the DM are in their stable configuration. As the distance separating the atomic
nuclei decreases, the repulsive forces between them intensify, leading to an increase in
the potential that approaches an infinitely large value. On the other hand, during the
process of decomposition of the DM, the distance between nuclei increases towards infin-
ity, leading to the elimination of the potential. Figures 2 demonstrates the effect of the
fractional parameter o on the KP and MKP for the molecular Nitrogen. As the value of the
fractional parameter « increases steadily, we detect a gradual decrease in the equilibrium
inter-nuclear distance of the potential. Figure 3 demonstrates a similar effect of the frac-
tional parameter « on the wavefunction, where the wavefunction’s peak gradually shifts
to the left as the fractional parameter’s value increases. Figures 2 and 3 together uncover
the “Gohar fractional effect” (GFE) on the diatomic structure, in which raising the value
of the fractional parameter « creates an internal attractive force between the two atoms
of the DM and increases its coherence.
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Figure 2: Gohar fractional effect on the KP in (a) and MKP in (b) for the molecular Nitrogen
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Figure 3: Gohar fractional effect on the wavefunction of the molecular Nitrogen modeled by the KP in (a)
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The energy levels’ dependence on the quantum numbers n and { is demonstrated in
Figures 4 and 5, respectively. As the values of quantum numbers increase, there is a
progressive rise in the diatomic energy spectra. Moreover, for a fixed value of n and ¢,
increasing the fractional parameter « causes a significant increase in the diatomic eigen-
energies. Therefore, raising the fractional parameter enhances the internal coherence of
the diatomic structure, and the DMs are more constrained in the classical case, where
« = 1, than in the fractional one, where 0 < « < 1. Figures 6 and 7 reveal the variation of
the energy levels with the equilibrium inter-nuclear distance r. and the reduced mass ,
respectively, for different values of the fractional parameter «. As r. and p assume larger
values, we observe a corresponding reduction in the diatomic energy spectra. For a fixed
value of r. and y, raising o augments the diatomic energy spectra.

{b)
@) 15[ @=02
-11.0 =04
-11.2 £ 100 a=06
= -11.4 E | @z08 e
L] L ‘."“'
-11.6 056 g=p2e-
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0 2 4 6 8 10 12 14
n n

Figure 4: The variation of the Energy spectra of the molecular Nitrogen with n at various values of the
fractional parameter o for KP in (a) and MKP in (b)
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Figure 5: The variation of the Energy spectra of the molecular Nitrogen with { at various values of the
fractional parameter « for KP in (a) and MKP in (b)
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Figure 6: The variation of the Energy spectra of the molecular Nitrogen with the equilibrium bond length r.
at various values of the fractional parameter « for KP in (a) and MKP in (b)
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Figure 7: The variation of the Energy spectra of the molecular Nitrogen with the reduced mass p at various
values of the fractional parameter « for KP in (a) and MKP in (b)
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Table 1 includes the spectroscopic parameters of the DMs. To validate the GFNU
method, developed in this work, and study the effect of the dimensionality N on the
diatomic energy levels, the classical ro-vibrational energy spectra for NO and CO DMs,
as modeled by KP, are obtained by setting o« = 1 and represented numerically in Tables
2 and 3, respectively, for different values of the dimensionality. For N = 3, our results
are compared to the corresponding results obtained by different analytical methods in the
literature, such as the EQM [20] and AIM [21]; the remarkable consistency between our
results and those previously reported in the literature demonstrates the validity and appli-
cability of the GFNU method. As shown in Tables 2 and 3, increasing the dimensionality
results in a corresponding decrease in the energy levels, as the multi-dimensional energy
spectra are lower than their corresponding three-dimensional values.

Table 1: Spectroscopic parameters of various DMs [20, 21]

DM . (f\) De(eV) wlamu)
HCl 1.2746 4.619061175  0.9801045
LiH 1.5956 2.515283695 0.8801221
ScH 1.7080 4.56 10.682771
NO 1.1508 8.043782568 7.468441
CO 1.1282 10.84507364 6.860586
H, 0.7416 4.7446 0.50391
O, 1.2080 5.156658828 7.997457504
I, 2.6620 1.581791864 63.452235
N, 1.0940 11.93827205 7.00335

Table 2: Eg’?’N[eV) of NO molecule in the KP for « = 1 and different values of the dimensional number v\

N=3

n I GFNU EQR [20] AIM [21] N=4 N=5 N=6

0 0 -8.002659243 -8.002659419 -8.002659417 -8.002501971  -8.002239863 -8.001872940

1 0 -7.921456323 -7.921456840 -7.921456839 -7.921301438 -7.921043309 -7.920681957
1 -7.921043308 -7.921043829 -7.921043834 -7.920681957  -7.920217410 -7.919649704

2 0 -7.841483108 -7.841483958 -7.841483956 -7.841330563  -7.841076333  -7.840720439
1 -7.841076333 -7.841077185 -7.841077188 -7.840720439  -7.840262909 -7.839703778
2 -7.840262908 -7.840263768 -7.840263771 -7.839703778  -7.839043090 -7.838280896

3 0 -7.762714895 -7.762716067 -7.762716066 -7.762564643  -7.762314234 -7.761963689
1 -7.762314233 -7.762315408 -7.762315413 -7.761963689  -7.761513035 -7.760962306
2 -7.761513034 -7.761514215 -7.761514218 -7.760962306 -7.760311547 -7.759560807
3 -7.760311547 -7.760312738 -7.760312744 -7.759560807  -7.758710145 -7.757759626

To the best of our knowledge, this study is the first to determine the ro-vibrational

energy spectra for HCL, LiH, ScH, H;,0,, and I, DMs in the MKP model. With the aim
of providing a comparative benchmark against which future studies can be compared,
we have only included our numerical values for these DMs in Table 4. The molecules
investigated in this work were selected due to their extensive applications in chemistry

and molecular physics. In our calculations, we take n = 1, hc = 1973.29eVA, and 1 amu
= 931.494028 MeV/c?.



A.A. Gohar et al. | Gohar Fractional Effect....

66

Table 3: E;’:?’N[eV) of CO molecule in the KP for « = 1 and different values of the dimensional number vN

N=3

n I GFNU EQR [20] AIM [21] N=4 N=5 N=6

0 0 -10.794244204 -10.794315323 -10.79431532 -10.794065953  -10.793768882  -10.793353009

1 0 -10.693768716 -10.693839925 -10.69383992 -10.693592948 -10.693300014 -10.692889935
1 -10.693300015 -10.693371229 -10.69337123 -10.692889935 -10.692362737 -10.691718454

2 0 -10.594689602 -10.594760890 -10.59476089 -10.594516271  -10.594227400 -10.593823006
1 -10.594227400 -10.594298692 -10.59429869 -10.593823006 -10.593303117 -10.592667767
2 -10.593303118 -10.593374417 -10.59337441 -10.592667767 -10.591916996 -10.591050856

3 0 -10.496981107 -10.497052462 -10.49705246 -10.496810168 -10.496525284 -10.496126471
1 -10.496525284 -10.496596643 -10.49659664 -10.496126471 -10.495613757 -10.494987175
2 -10.495613758 -10.495685124 -10.49568512 -10.494987175  -10.494246766 -10.493392578
3  -10.494246766 -10.494318144 -10.49431814 -10.493392578  -10.492424666 -10.491343095

Table 4: E%’?’N(eV) for HCL, LiH, ScH, H,, O,, and I, DMs in the MKP model for « = 1 and N = 3.

n I

HCL

LiH

ScH

Ho

(o))

%)

= O

N
UPAWNFHFOPNWNFHROWNHFHONRFRFOROO

0.077213291515
0.225334148907
0.227768274405
0.366325536938
0.368643459152
0.373271652035
0.500637769440
0.502846768819
0.507257561632
0.513855795085
0.628686160049
0.630792955686
0.634999753900
0.641293023758
0.649652605983
0.750854236603
0.752865037378
0.756880228920
0.762887042802
0.770866454582
0.780793335481

0.047973594210
0.139465053243
0.141176308997
0.225960330363
0.227579006688
0.230809419789
0.307816689241
0.309349345597
0.312408175247
0.316980281053
0.385360021482
0.386812646528
0.389711832269
0.394045513847
0.399795752314
0.458888095304
0.460266165482
0.463016626156
0.467128177136
0.472584014902
0.479362005521

0.017454431185
0.052031021007
0.052162862679
0.086214327050
0.086344671973
0.086605338979
0.120010291203
0.120139161948
0.120396880921
0.120783403098
0.153424743565
0.153552162279
0.153806977505
0.154189144854
0.154698597763
0.186463404953
0.186589393368
0.186841348308
0.187219226003
0.187722960823
0.188352465304

0.185432876611
0.521949955761
0.534573757990
0.822538871353
0.833839937078
0.856243027720
1.092137860359
1.102294716370
1.122434089221
1.152214844213
1.334864984720
1.344027026860
1.362197675253
1.389076567943
1.424228919907
1.554176326618
1.562469342699
1.578919731629
1.603261855385
1.635110936685
1.673978294206

0.030300337196
0.090018061581
0.090366889844
0.148698340375
0.149041126287
0.149726556834
0.206365065838
0.206701948152
0.207375574534
0.208385668635
0.263041446378
0.263372559884
0.264034651600
0.265027451072
0.266350552966
0.318750029899
0.319075505563
0.319726324465
0.320702221885
0.322002801084
0.323627533705

0.002709298059
0.008104747222
0.008113972715
0.013472590593
0.013481768925
0.013500125265
0.018813016179
0.018822147669
0.018840410330
0.018867803519
0.024126210387
0.024135295355
0.024153464972
0.024180718601
0.024217055287
0.029412358044
0.029421396804
0.029439474009
0.029466589024
0.029502740902
0.029547928374

5. Summary and Conclusions

In this work, the Gohar fractional calculus (GFC) is used to extend the scope of the
“Nikiforov-Uvarov” (NU) analytical method into the domain of fractional calculus. The
Gohar fractional NU (GFNU) method is applied to solve the hyper-radial Schrodinger
equation (SE) with the molecular Kratzer potential (KP) and modified Kratzer potential
(MKP) in N-dimensional space for the bound state eigen-energies and their corresponding
normalized hyper-radial eigen-states. The characteristic features of the KP and MKP are
explored graphically, and the effect of the fractional parameter on them is investigated
and discussed in detail. The binding ro-vibrational energy spectra for various well known
diatomic molecules (DMs) are computed numerically and analyzed graphically. The effect
of the fractional parameter and dimensionality on the obtained diatomic energy levels is
investigated numerically and graphically. In the classic case « = 1, our study provided
entirely novel results that had not been previously reported in the literature, while the
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remaining results are found to be perfectly compatible with those obtained via other an-
alytical approaches. The remarkable consistency between our results and those in the
literature demonstrates the accuracy and applicability of the GFNU method. Our work
uncovered the "Gohar fractional effect,"(GFE), in which a progressive rise in the inter-
nuclear attractive forces and binding ro-vibrational energy spectra of the DMs is observed
upon increasing the Gohar fractional parameter . The GFNU method opens the door to
explore further diatomic interactions and molecular structures in the future.
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