2024 Volume 5, Issue 1: 54-68

DOI: https://doi.org/10.48185/jaai.v5i1.972

SMRD: A Novel Cyber Warfare Modeling Framework for Social Engineering, Malware, Ransomware, and Distributed Denial-of-Service Based on a System of Nonlinear Differential Equations

Mohamed Aly Bouke 1,*, Azizol Abdullah1

¹Department of Communication Technology and Network, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia

Received: 16.01.2024 • Accepted: 05.03.2024 • Published: 20.03.2024 • Final Version: 27.04.2024

Abstract: Cyber warfare has emerged as a critical aspect of modern conflict, as state and non-state actors increasingly leverage cyber capabilities to achieve strategic objectives. The rapidly evolving cyber threat landscape demands robust and adaptive approaches to protect against advanced cyberattacks and mitigate their impact on national security. Traditional cyber defense strategies often struggle to keep pace with the rapidly changing threat landscape, resulting in the need for more robust and adaptive approaches to protect against advanced cyberattacks. This paper presents a novel cyber warfare modeling framework, Social Engineering, Malware, Ransomware, and Distributed Denial-of-Service (SMRD), capturing the interactions and interdependencies between these core components. The SMRD framework offers insights for enhancing cyber defense, threat prediction, and proactive measures. A mathematical model consisting of a system of nonlinear differential equations is proposed to quantify the relationships and dynamics between the components.

Keywords: Cyber warfare, modeling's framework, Cyber defense strategies, Cyber Security, Interdependencies and dynamics.

1. Introduction

Humanity has engaged in conflicts throughout history to further national objectives within a dynamic global power struggle. This power struggle has changed from historical sword wars to modern unmanned drone attacks. The expansion of the fighting field and the introduction of novel and inventive strategies to outmaneuver adversaries resulted from the development of armored vehicles, planes, ships, electronics, and telecommunications [1,2]. Just as the technological innovation of flight triggered a race to dominate the skies, cyberspace has opened up new strategic possibilities and threats, causing a scramble to secure a dominant position. Cyber warfare uses digital technologies to conduct aggressive actions against computer systems, networks, or digital infrastructure to cause harm or gain an advantage in a conflict [3]. This type of warfare can take many forms, including hacking, distributed denial-of-service (DDoS) attacks, and deploying malicious software or viruses. Cyber warfare can target not only military systems but also critical infrastructure, such as power grids, transportation systems, and financial networks, which can

-

^{*} Corresponding Author: bouke@ieee.org

significantly impact civilians [4]. The increasing dependence on technology in modern society has made cyber warfare a growing concern for governments, militaries, and businesses worldwide.

Governments are fully aware of the need to respond to cyberspace threats. United States (US) President Barack Obama declared America's digital infrastructure a strategic national asset and formed Cybercom, a division within the Pentagon, with the stated task of performing full-spectrum operations [5-7]. Leaked documents from the National Security Agency in the US confirm that national security figures seek to establish offensive cyber capabilities. United Kingdom (UK) government officials have warned of a lack of preparedness for cyber warfare and announced new investments to bolster defense, such as the National Cyber Security Programme [8]. NATO has also been raising awareness by releasing the Tallinn Manual on the International Law Applicable to Cyber Warfare to advise nations on legally operating in this new warfighting domain [9]. As a result, efforts have been made to develop international norms and regulations for cyber warfare to mitigate its risks and prevent escalation into a full-scale conflict. The impacts of cyber warfare can be significant and far-reaching. In addition to the immediate damage caused by a successful attack, there can be broader consequences, such as economic disruption, loss of public trust, and damage to international relations. Because cyber-attacks can be difficult to attribute to specific actors or entities, there is also a risk of escalation or misinterpretation, potentially leading to more significant conflicts or tensions between nations [5,10]. Looking at this evidence, it is clear that cyber warfare is a global concern. As technology advances, cyber warfare will likely become an even more prominent feature of modern warfare, highlighting the need for continued efforts to develop international norms and regulations to mitigate risks and prevent escalation into more significant conflicts. Advanced frameworks and strategies for conducting and thwarting cyber-attacks will be necessary to defend against cyber threats and ensure a secure digital environment.

Several cyber warfare modeling approaches have been proposed to help understand, predict, and mitigate the cyber-attack impact. These models typically focus on specific aspects of cyber warfare, such as vulnerability assessment, attack propagation, or defense mechanisms. Some widely-used models include attack graphs, attack-defense trees, and agent-based simulations [11]. While these approaches have provided valuable insights into the complex dynamics of cyber warfare, they often lack the comprehensiveness and adaptability required to address the ever-changing threat landscape. Moreover, most existing models do not adequately account for the interaction and interdependence between various cyber-attack types, essential for a holistic understanding of cyber warfare. To effectively address these challenges, it is essential to develop a comprehensive understanding of the various attack types, their interdependencies, and the most effective mitigation strategies.

This paper introduces the Social Engineering, Malware, Ransomware, and Distributed Denial-of-Service (SMRD) framework, a holistic and adaptable platform designed to enhance cyber defense capabilities and protect digital assets and infrastructure. The SMRD framework integrates four core components of cyber warfare—social engineering (SE), Malware (M), Ransomware (R), and distributed denial-of-service (DDoS)—providing valuable insights and recommendations for enhancing cyber resilience. By examining the dynamics of these core components and their interactions, this paper aims to offer a comprehensive analysis of the SMRD framework and its applications in cyber warfare, incident response, and training and education.

The rest of this paper is organized as follows: Section 2 provides a literature review of existing cyber warfare modeling approaches, emphasizing their strengths and weaknesses. Section 3 introduces the SMRD Framework and presents visual aids we have developed to illustrate its components. Section 4 delves into the mathematical modeling underpinning the framework. Section 5 evaluates the

SMRD framework by comparing it to existing cybersecurity risk management approaches, discussing its advantages and limitations, and highlighting potential areas for future research and improvement. Finally, Section 6 concludes the paper by summarizing our findings and underscoring the contributions of the SMRD framework to cybersecurity risk management.

2. Background work

Cyber threats' rapid evolution and increasing sophistication have created significant challenges for organizations and individuals in protecting their digital assets and infrastructure. Understanding cyber attacks' diverse nature and interdependencies is crucial for developing effective defense strategies. This literature review focuses on the key components of the proposed SMRD framework (Social Engineering, Malware, Ransomware, and Distributed Denial-of-Service attacks). It examines the existing literature on these topics. We aim to provide a holistic understanding of the current research landscape, identify gaps, and demonstrate the need for a novel, integrated approach to cyber warfare modeling that the SMRD framework seeks to address.

Coulson [12] develops Lanchester combat models to understand the utility of intelligence as a force multiplier in warfare and to examine how intelligence superiority can compensate for an inferior force ratio and influence the time it takes for one side to defeat the other. Tatam et al. [13] examine Threat Modelling (TM) in cybersecurity, focusing on its limitations, strengths, and gaps. This review discusses key findings related to various TM methodologies and their applicability in different organizational settings. Apostol [14] discusses the integration of malware propagation modeling with conventional warfare models. Using Bayesian Network analysis, the study develops integrated combat models that characterize malware spread, aiming to predict which side will likely have superiority at the end of the war based on initial parameters addressing kinetic and cyber-effect influences.

Aboaoja et al. [15] provide a comprehensive review of malware detection model research, discussing the evolution and trends of malware analysis and detection approaches. The survey also discusses challenges and future research directions. Del Rey [16] critically reviews mathematical models proposed to simulate malware propagation in computer and mobile device networks. The paper suggests that these limitations can be overcome using discrete models, such as agent-based or cellular automata models. Sengul and Acarturk [17] review five Malware, epidemiological propagation models, analyzing their applicability and limitations to identify parameters to improve propagation modeling. Huang and Chiang [18] analyze the characteristics of modern cyberattacks and simulate their dynamic propagation. The study develops a self-adaptive framework that significantly improves cyber defense efficiency through simulation.

Urooj et al. [19] present a comprehensive survey of ransomware detection studies that utilize dynamic analysis, machine learning, and deep learning and combine both techniques for various targeted platforms. Oz et al. [20] provide a detailed overview of ransomware evolution, analyze key building blocks of Ransomware, propose a taxonomy of notable ransomware families, and give an extensive overview of ransomware defense research (analysis, detection, and recovery) for various platforms. Alqahtani and Sheldon [21] focus on the state-of-the-art in ransomware attack detection, specifically crypto-ransomware, and review the approaches and open issues related to ransomware detection modeling.

Uebelacker and Quiel [22] explore the susceptibility to social engineering attacks in the context of Information and Communication Technology security, focusing on the influence of personality traits. The authors propose the theory-based "Social Engineering Personality Framework" (SEPF) that

suggests plausible relationships between the Big Five personality traits and Cialdini's principles of influence. Mittal et al. [23] systematically review deep learning approaches to detecting Distributed Denial of Service (DDoS) attacks, analyzing relevant studies and categorizing the results into five main research areas.

Given the limitations of existing cyber warfare modeling approaches, it is imperative to develop an innovative framework that can offer a comprehensive and adaptable analysis of the entire cyber warfare spectrum, encompassing various attack vectors and techniques and their interactions and effects on the overall cyber warfare landscape. In response to these constraints, this article presents the Social Engineering, Malware, Ransomware, and Distributed Denial-of-Service (SMRD) framework, a pioneering cyber warfare modeling methodology that fulfills these stipulations. The SMRD framework furnishes a comprehensive and versatile platform for examining, forecasting, and mitigating the consequences of diverse cyber-attacks, emphasizing their interdependence and the intrinsic strategies utilized by adversaries. Additionally, it should supply actionable insights and recommendations for augmenting cyber defense capabilities, empowering organizations and governments to safeguard their digital assets and infrastructure better. In the subsequent sections, we will delineate the fundamental components and characteristics of the SMRD framework and its prospective applications and advantages in alleviating the current state of cyber defense.

3. SMRD Framework: Components and Features

This The SMRD framework is designed to provide a comprehensive and adaptable platform for understanding and addressing the complex dynamics of cyber warfare. It encompasses four key components: Social Engineering (SE), Malware (M), Ransomware (R), and Distributed Denial-of-Service (DDoS), each of which is detailed in the following sections. Figure 1 depicts the overall architecture of the SMRD.

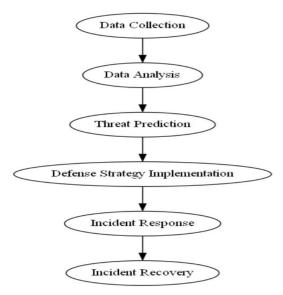


Figure 1 Architecture of SMRD framework.

The interaction matrix heatmap in Figure 2 clearly represents the interaction strengths between the core components of the SMRD framework, which include Social Engineering, Malware, Ransomware, and DDoS attacks. Each cell represents the interaction strength between a pair of components in this heatmap. The color intensity of each cell corresponds to the strength of the interaction, with darker shades indicating stronger interactions. Examining the heatmap can easily identify the relationships between different cyber threat components. For example, the strong interaction between Malware and Ransomware suggests that these components often occur together or significantly impact each other. On the other hand, the weaker interaction between Social Engineering and DDoS attacks implies that these components are less likely to be related or have a smaller combined effect.

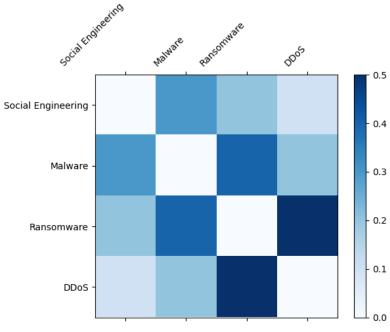


Figure 2 Interaction Matrix.

Figure 3 Temporal Evolution of Severity Levels.

The temporal evolution plot in Figure 3 illustrates how the severity levels of the core components change over time. Each line in the plot represents the severity level of a specific cyber threat component, with time on the x-axis and severity level on the y-axis. By visualizing the data in this manner, we can easily compare the progression of severity levels for different cyber threats. In the example plot, we can observe that the severity levels of all components decrease over time. However, the rate at which the severity levels decrease varies for each component. This can be seen through the different slopes of the lines. For instance, the severity level of Ransomware decreases at a faster rate compared to Malware, suggesting that the impact of Ransomware diminishes more rapidly over time.

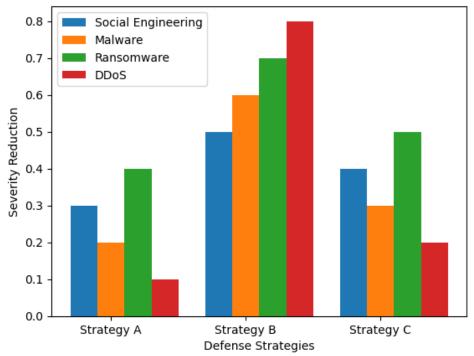


Figure 4 Bar Chart of Defense Strategies.

The bar chart of defense strategies in Figure 4 displays the effectiveness of different strategies in reducing the severity levels of each core component in the SMRD framework. In this chart, the xaxis represents the defense strategies (e.g., Strategy A, Strategy B, Strategy C), and the y-axis represents the reduction in severity levels for each core component. Each group of bars represents a specific defense strategy, with individual bars within the group corresponding to the reduction in severity levels for each cyber threat component. This visual aid allows readers to quickly compare the effectiveness of various defense strategies for each core component. For example, we can see that Strategy B is the most effective at reducing the severity levels of Malware and Ransomware attacks. In contrast, Strategy A appears to be the worst for mitigating DDoS threats. By evaluating the performance of different defense strategies, decision-makers can make informed choices about which strategies to prioritize and implement to address the most critical cyber threats.

3.1. Social Engineering (SE)

Social Engineering (SE) is a non-technical attack method that exploits human psychology and trusts to deceive individuals into divulging sensitive information or performing actions that compromise the security of their organization or system [24].

3.1.1. SE Attack Vectors and Methods

SE attacks employ a variety of tactics, including phishing, pretexting, baiting, and tailgating. These methods often leverage impersonation, persuasion, and social cues to manipulate victims into revealing passwords, clicking on malicious links, or providing access to restricted areas [25].

3.1.2. SE Detection and Mitigation Techniques

Detecting and mitigating SE attacks requires a combination of technical and non-technical measures. These include user education and training, implementation of robust security policies, multi-factor authentication, and continuous monitoring of suspicious activities. Advanced AI-driven solutions can also be employed to identify and thwart SE attempts in real-time [26].

3.1.3. SE Integration into the SMRD Framework

The SMRD framework integrates SE as a core component, recognizing its potential to initiate or exacerbate other attack types, such as Malware and Ransomware. The SMRD framework helps develop proactive defense strategies and enhance overall cyber resilience by analyzing SE tactics and their relationship with other components.

3.2. Malware (M)

Malware, short for malicious software, is intentionally created to harm computer systems, networks, or mobile devices. It can come in various forms, such as viruses, worms, Trojans, spyware, adware, Ransomware, and more [17]. It can be spread through multiple channels, such as email attachments, infected websites, compromised software, and removable media [23]. The main goal of Malware is to gain unauthorized access to a victim's computer or network, steal or modify data, disrupt the system's normal operation, or extort money.

3.2.1. Types of Malware

Malware can take on various forms, each with its unique characteristics and attack mechanisms [27]:

- *Viruses:* These programs can self-replicate by attaching themselves to legitimate files or programs, spreading from one computer to another, and causing damage to files, applications, or the operating system.
- *Worms:* These are standalone programs that can self-replicate and spread across networks, exploiting vulnerabilities in operating systems, email clients, or other software. They can also perform malicious activities, such as launching denial-of-service attacks or stealing data.
- *Trojans*: These malicious programs masquerading as legitimate software or files, tricking users into downloading and executing them. Once installed, Trojans can perform various

harmful activities, such as stealing data, controlling the system remotely, or launching attacks on other computers.

- *Spyware*: This type of Malware is designed to monitor a user's activity without their knowledge or consent. Spyware can record keystrokes, capture screenshots, track web browsing habits, and transmit this information to the attacker.
- *Adware*: This type of Malware displays unwanted and intrusive ads on a user's computer, often redirecting them to malicious websites or installing other Malware.
- *Rootkits* are stealthy programs that can hide their presence on a system by modifying the operating system or security software. Once installed, rootkits can allow attackers to gain continued access to a compromised system, steal data, or launch attacks on other computers.

Each type of Malware has its unique characteristics and requires different approaches to detect and mitigate. Using up-to-date antivirus software and maintaining a strong security posture to prevent malware infections is essential.

3.2.2. Malware Analysis and Defense

Effective defense against Malware requires a multi-layered approach, including signature-based detection, behavior-based analysis, sandboxing, and machine learning algorithms. Additionally, regular software updates, patch management, and robust access controls can help minimize the risk of malware infections [28].

To effectively defend against Malware, it's important to adopt a multi-layered approach that combines several security measures. These include:

- Signature-based detection: This involves using antivirus software that scans files for known malware signatures. Signature-based detection is effective in detecting known Malware, but it can be less reliable against new or unknown threats.
- *Behavior-based analysis*: This involves monitoring the behavior of files and programs to detect suspicious or malicious activity. Behavior-based analysis can detect previously unknown Malware, making it a useful complement to signature-based detection.
- *Sandboxing*: This involves running files and programs in an isolated environment to prevent them from affecting the system. Sandboxing can help identify and contain Malware, providing an additional layer of protection.
- *Machine learning algorithms*: These are used to identify patterns and anomalies in data, enabling the detection of previously unknown threats. Machine learning algorithms can be applied to both signature-based and behavior-based detection to improve accuracy and effectiveness.

In addition to these technical measures, there are also several best practices that can help minimize the risk of malware infections, including:

- *Regular software updates:* Keeping software and operating systems up-to-date can help address vulnerabilities that could be exploited by Malware.
- *Patch management:* Promptly applying security patches can prevent attackers from exploiting known vulnerabilities in software and systems.
- *Robust access controls:* Implementing strong access controls, such as password policies and multi-factor authentication, can help prevent unauthorized access to systems and data.

By adopting a multi-layered approach that combines technical measures with best practices, organizations can significantly reduce their risk of malware infections and minimize the impact of any successful attacks.

3.2.3. Integration into the SMRD Framework

The SMRD framework incorporates Malware as a central component, analyzing its relationship with other attack types and exploring novel defense strategies. By understanding Malware's evolving nature and its role in cyber warfare, the SMRD framework contributes to developing advanced countermeasures and mitigation techniques.

3.3. Ransomware (R)

Ransomware is a specific type of Malware designed to encrypt a victim's data and prevent them from accessing it until a ransom is paid. The encryption process used by Ransomware is typically very strong, making it nearly impossible to decrypt the files without the proper decryption key [19]. Once the Ransomware has encrypted the victim's files, a message is usually displayed on the victim's screen demanding payment in exchange for the decryption key. Payment is typically requested in a cryptocurrency such as Bitcoin, which can be challenging to trace. Ransomware attacks can be very disruptive to individuals and organizations alike. In many cases, the encrypted files contain critical information that is needed to conduct business, provide services, or even perform life-saving operations in healthcare settings. If the files cannot be decrypted, the victim may be forced to either pay the ransom or suffer the consequences of losing access to their data. Ransomware attacks can be delivered through a variety of channels, including email attachments, malicious websites, and even through software vulnerabilities. In some cases, attackers may also use social engineering tactics to trick victims into downloading and installing the Ransomware themselves [29].

3.3.1. Ransomware Attack Mechanisms

Ransomware can be delivered through various channels, including phishing emails, malicious downloads, and exploit kits. Advanced ransomware strains may also employ "worm-like" capabilities to propagate across networks and infect multiple systems [20,30].

3.3.2. Ransomware Detection and Response

Detecting and responding to ransomware attacks involve a combination of proactive measures, such as regular data backups, robust security policies, and employee training, and reactive strategies, like isolating infected systems, conducting forensic analysis, and engaging law enforcement or cybersecurity professionals [31].

3.3.3. Integration into the SMRD Framework

The SMRD framework integrates Ransomware as a critical component, recognizing its potential to cause significant financial and operational damage. By examining ransomware tactics, attack vectors, and mitigation strategies, the SMRD framework helps organizations develop comprehensive defense and response plans.

3.4. Distributed Denial-of-Service (DDoS)

A DDoS (Distributed Denial of Service) attack is a type of cyber attack that involves overwhelming a target system or network with a large volume of traffic or requests. This traffic can be generated by multiple sources, such as computers or other internet-enabled devices that have been compromised by the attacker, forming a network of bots (botnet) [32]. A DDoS attack aims to disrupt the normal functioning of a system or network, rendering it unavailable to legitimate users. This is typically achieved by sending traffic to the target, overwhelming its CPU, memory, and bandwidth

3.4.1. DDoS Attack Techniques

DDoS attacks can be categorized into three main types [33,35]:

- *Volumetric* attacks inundate the target with big data, consuming bandwidth and network resources.
- *Application-layer* attacks target specific applications or services, exhausting server resources and disrupting availability.
- **Protocol** attacks exploit weaknesses in network protocols, causing the server or network equipment failures.

3.4.2. DDoS Mitigation Strategies

Mitigating DDoS attacks requires a multi-faceted approach that combines traffic filtering, rate limiting, and traffic redirection. Cloud-based DDoS protection services can help absorb and dissipate attack traffic, while on-premise solutions can provide granular control and visibility. Moreover, implementing robust network architecture, such as redundancy and load balancing, can enhance resilience against DDoS attacks [36,37].

3.4.3. Integration into the SMRD Framework

The SMRD framework incorporates DDoS as a key component, acknowledging its capacity to cause significant service disruptions and financial losses. By analyzing DDoS attack techniques, their relationship with other cyber warfare components, and effective mitigation strategies, the SMRD framework supports the development of comprehensive defense mechanisms and enhances overall cyber resilience.

In conclusion, the SMRD framework provides a holistic and adaptable platform for understanding, predicting, and mitigating the impact of various cyber-attacks, including Social Engineering, Malware, Ransomware, and Distributed Denial-of-Service. By integrating these core components and examining their interdependencies, the SMRD framework offers valuable insights and recommendations for enhancing cyber defense capabilities and protecting digital assets and infrastructure.

4. Mathematical Representation of the SMRD Framework

To gain a deeper understanding of the relationships and interactions between the core components of the SMRD framework – Social Engineering (SE), Malware (M), Ransomware (R), and Distributed Denial-of-Service (DDoS) –, we developed a mathematical model that quantifies their dynamics and potential impacts. This section introduces the proposed mathematical representation, describes its structure and parameters, and discusses its practical applications and potential limitations.

4.1. Structure of the Mathematical Model

The proposed mathematical model for the SMRD framework is a system of nonlinear differential equations that describe the temporal evolution of the severity levels of *SE*, *M*, *R*, and DDoS attacks.

The severity levels, represented by S(t), M(t), R(t), and D(t), can be quantified using relevant metrics, such as the number of incidents, financial losses, or other indicators that reflect the magnitude and impact of each type of attack.

The structure of the mathematical model is as follows:

$$dS/dt = \alpha_1 + \beta_1 M(t) + \gamma_1 R(t) + \delta_1 D(t) - \lambda_1 S(t)$$
 (1)

$$dM/dt = \alpha_2 + \beta_2 S(t) + \gamma_2 R(t) + \delta_2 D(t) - \lambda_2 M(t)$$
 (2)

$$dR/dt = \alpha_3 + \beta_3 S(t) + \gamma_3 M(t) + \delta_3 D(t) - \lambda_3 R(t)$$
 (3)

$$dD/dt = \alpha_4 + \beta_4 S(t) + \gamma_4 M(t) + \delta_4 R(t) - \lambda_4 D(t)$$
 (4)

Where α_i , β_i , γ_i , and δ_i are constants representing the intrinsic growth rates and interaction strengths of each component, and λ_i represents the decay or mitigation rate of each component (i = 1, 2, 3, 4).

4.2. Parameter Description and Estimation

The parameters of the mathematical model $(\alpha_i, \beta_i, \gamma_i, \delta_i, and \lambda_i)$ have the following interpretations:

- α_i represents the intrinsic growth rate of component i, indicating its natural tendency to increase or decrease in severity over time.
- β_i , γ_i , and δ_i represent the interaction strengths between component i and the other components, capturing the synergistic or antagonistic effects that arise from the interdependencies between different types of cyber-attacks.
- λ_i represents the decay or mitigation rate of component i, reflecting the effectiveness of defense strategies and countermeasures in reducing the severity of each type of attack.

To apply the mathematical model in practice, we must estimate these parameters using real-world data from historical cyber-attacks, expert assessments, or other relevant sources. This process may involve statistical techniques, such as regression analysis or Bayesian inference, to obtain the best-fitting parameter values for a specific organization or context.

4.3. Practical Applications and Limitations

The proposed mathematical model can provide valuable insights into the dynamics of cyber warfare, the interdependencies between different types of attacks, and the effectiveness of various defense strategies. Some potential applications of the model include:

- *Predicting* the evolution of cyber threats under different scenarios, such as changes in the threat landscape, technological advancements, or policy interventions.
- *Evaluating* the impact of specific defense strategies or countermeasures on the severity of different types of attacks helps organizations prioritize their investments in cyber security.
- *Identifying* vulnerabilities or weak points in an organization's cyber defense posture, allowing for targeted improvements in security policies, technologies, and practices.

However, it is important to acknowledge the potential limitations of the mathematical model, which include the following:

- Simplifications and assumptions: The model simplifies cyber warfare's complex reality by representing the core components with equations. This simplification may not capture all
- relevant aspects of the problem or accurately represent the real-world dynamics of cyberattacks. Furthermore, the model assumes that the interactions between the components are linear and time-invariant, which may not always be the case.
- *Parameter estimation uncertainty:* Estimating the model parameters from real-world data can be challenging due to data limitations, measurement errors, or inherent variability in the cyber threat landscape. This uncertainty can affect the accuracy and reliability of the model's predictions and recommendations.
- *Context-specificity:* The model may need to be calibrated and adapted for different organizations or contexts, as the parameter values and underlying dynamics may vary across different sectors, regions, or time periods. This context-specificity can limit the generalizability and transferability of the model's findings.

Despite these limitations, the mathematical representation of the SMRD framework offers a valuable tool for understanding and addressing the complex dynamics of cyber warfare. By quantifying the relationships and interactions between the core components, the model enables organizations, governments, and individuals to develop more effective defense strategies, prioritize investments in cybersecurity, and enhance their overall cyber resilience. Future research can explore ways to refine and extend the model, incorporating additional components, data sources, and analytical techniques better to capture the evolving challenges and opportunities in cyber warfare.

5. SMRD Framework: Applications and Advantages

The SMRD framework offers a range of applications and advantages in cyber warfare, enabling organizations, governments, and individuals to understand better and respond to the ever-evolving threat landscape. In this section, we outline the key benefits of the SMRD framework in terms of cyber defense enhancement, threat intelligence and prediction, incident response and recovery, and training and education.

5.1. Cyber Defense Enhancement

By providing a comprehensive and adaptable platform for analyzing various cyber-attacks and their interdependencies, the SMRD framework allows organizations to develop proactive and robust defense strategies. With a deeper understanding of attack techniques, vectors, and potential consequences, organizations can implement more effective countermeasures and mitigation techniques. This, in turn, strengthens their overall cyber resilience and reduces the likelihood of successful attacks.

5.2. Threat Intelligence and Prediction

The SMRD framework contributes to developing advanced threat intelligence and prediction capabilities by facilitating the identification of emerging trends, patterns, and attack methodologies. By analyzing the dynamics of cyber warfare and the relationships between different attack types, the SMRD framework enables organizations to anticipate potential threats and stay ahead of adversaries. This proactive approach to threat intelligence allows for better-informed decision-making and a more targeted allocation of resources in the ongoing battle against cyber-attacks.

5.3. Incident Response and Recovery

In the event of a cyber-attack, the SMRD framework provides valuable insights and guidance for incident response and recovery efforts. By examining the various components of cyber warfare and

their potential impacts, the framework can help organizations prioritize their response actions, effectively isolate and contain incidents, and minimize potential damage. Furthermore, the SMRD framework supports the development of robust recovery plans, enabling organizations to restore their systems and operations in a timely and secure manner.

5.4. Training and Education

The SMRD framework also serves as an invaluable resource for training and education in cyber warfare. By offering a comprehensive and holistic view of the cyber threat landscape, the framework can be used to develop targeted training programs and educational materials for cybersecurity professionals, IT staff, and end-users. This enhanced training and education can lead to a greater awareness of cyber risks and more effective security practices, ultimately contributing to a more robust overall cyber defense posture.

In summary, the SMRD framework offers a wide range of applications and advantages in cyber warfare, including cyber defense enhancement, threat intelligence, and prediction, incident response and recovery, and training and education. By providing a comprehensive and adaptable platform for understanding and addressing the complex dynamics of cyber warfare, the SMRD framework equips organizations, governments, and individuals with the tools and knowledge needed to protect their digital assets and infrastructure effectively.

6. Conclusion

The SMRD framework presents a comprehensive and adaptable platform for understanding, predicting, and mitigating the impact of various cyber-attacks, encompassing social engineering, malware, Ransomware, and distributed denial-of-service. By integrating these core components and examining their interdependencies, the SMRD framework offers valuable insights and recommendations for enhancing cyber defense capabilities and safeguarding digital assets and infrastructure.

Future research within the SMRD framework can integrate advanced artificial intelligence and machine learning techniques to enhance threat detection, analysis, and prediction capabilities. Furthermore, researchers can explore the development of automated incident response and recovery mechanisms and investigate the applicability of the SMRD framework across various industry sectors and contexts.

As a powerful tool for addressing cyber warfare's complex and evolving challenges, the SMRD framework provides a comprehensive and adaptable platform for comprehending and responding to the full spectrum of cyber threats. It enables organizations, governments, and individuals to protect their digital assets and infrastructure effectively. The SMRD framework will help safeguard the digital world as the cyber threat landscape evolves by bolstering cyber resilience.

References

- [1] P. Mali, J.S. Sodhi, T. Singh, S. Bansal, Analysing the awareness of cyber crime and designing a relevant framework with respect to cyber warfare: an empirical study, Int. J. Mech. Eng. Technol. 9 (2018) 110–124.
- [2] M.A. Bouke, A. Abdullah, S.H. ALshatebi, S.A. Zaid, H. El Atigh, The intersection of targeted advertising and security: Unraveling the mystery of overheard conversations, Telemat. Informatics Reports. 11 (2023) 100092. https://doi.org/10.1016/j.teler.2023.100092.
- [3] A.P. Liff, Cyberwar: a new 'absolute weapon'? The proliferation of cyberwarfare capabilities and interstate war, J. Strateg. Stud. 35 (2012) 401–428.

- [4] J.A. Lewis, Assessing the risks of cyber terrorism, cyber war and other cyber threats, Center for Strategic & International Studies Washington, DC, 2002.
- [5] J. Jang-Jaccard, S. Nepal, A survey of emerging threats in cybersecurity, J. Comput. Syst. Sci. 80 (2014) 973–993.
- [6] Command History, (n.d.). https://www.cybercom.mil/About/History/ (accessed April 10, 2023).
- [7] M. Bouke, A. Abdullah, Turnkey Technology: A Powerful Tool for Cyber Warfare, ArXiv Prepr. ArXiv2308.14576. (2023) 1–11. http://arxiv.org/abs/2308.14576.
- [8] National Cyber Strategy 2022 (HTML) GOV.UK, (n.d.). https://www.gov.uk/government/publications/national-cyber-strategy-2022/national-cyber-security-strategy-2022#the-national-cyber-force (accessed April 10, 2023).
- [9] M.N. Schmitt, Tallinn manual on the international law applicable to cyber warfare, Cambridge University Press, 2013.
- [10] Mounting Cyber Threats Mean Financial Firms Urgently Need Better Safeguards, (n.d.). https://www.imf.org/en/Blogs/Articles/2023/03/02/mounting-cyber-threats-mean-financial-firms-urgently-need-better-safeguards (accessed April 6, 2023).
- [11] J. Jang-Jaccard, S. Nepal, A survey of emerging threats in cybersecurity, J. Comput. Syst. Sci. 80 (2014) 973–993. https://doi.org/10.1016/j.jcss.2014.02.005.
- [12] S.G. Coulson, Lanchester modelling of intelligence in combat, IMA J. Manag. Math. 30 (2019) 149–164. https://doi.org/10.1093/imaman/dpx014.
- [13] M. Tatam, B. Shanmugam, S. Azam, K. Kannoorpatti, A review of threat modelling approaches for APT-style attacks, Heliyon. 7 (2021) e05969. https://doi.org/10.1016/j.heliyon.2021.e05969.
- [14] I. Apostol, A Survey on Epidemiological Propagation Models of Botnets, J. Mil. Technol. 3 (2020) 29–36. https://doi.org/10.32754/JMT.2020.1.05.
- [15] F.A. Aboaoja, A. Zainal, F.A. Ghaleb, B.A.S. Al-rimy, T.A.E. Eisa, A.A.H. Elnour, Malware Detection Issues, Challenges, and Future Directions: A Survey, Appl. Sci. 12 (2022). https://doi.org/10.3390/app12178482.
- [16] A.M. del Rey, Mathematical modeling of the propagation of malware: a review, Secur. Commun. Networks. 8 (2015) 2561–2579.
- [17] Z. Sengul, C. Acarturk, Cyber Warfare Integration to Conventional Combat Modeling: A Bayesian Framework, 14th Int. Conf. Inf. Secur. Cryptology, ISCTURKEY 2021 Proc. (2021) 1–6. https://doi.org/10.1109/ISCTURKEY53027.2021.9654297.
- [18] K.J. Huang, K.H. Chiang, Toward a Self-Adaptive Cyberdefense Framework in Organization, SAGE Open. 11 (2021). https://doi.org/10.1177/2158244020988855.
- [19] U. Urooj, B.A.S. Al-Rimy, A. Zainal, F.A. Ghaleb, M.A. Rassam, Ransomware Detection Using the Dynamic Analysis and Machine Learning: A Survey and Research Directions, Appl. Sci. 12 (2022). https://doi.org/10.3390/app12010172.
- [20] H. Oz, A. Aris, A. Levi, A.S. Uluagac, A survey on ransomware: Evolution, taxonomy, and defense solutions, ACM Comput. Surv. 54 (2022) 1–37.
- [21] A. Alqahtani, F.T. Sheldon, A Survey of Crypto Ransomware Attack Detection Methodologies: An Evolving Outlook, Sensors. 22 (2022) 1–19. https://doi.org/10.3390/s22051837.
- [22] S. Uebelacker, S. Quiel, The social engineering personality framework, Proc. 4th Work. Socio-Technical Asp. Secur. Trust. STAST 2014 Co-Located with 27th IEEE Comput. Secur. Found. Symp. CSF 2014 Vienna Summer Log. 2014. (2014) 24–30. https://doi.org/10.1109/STAST.2014.12.
- $[23]\ M.\ Mittal,\ K.\ Kumar,\ S.\ Behal,\ Deep\ learning\ approaches\ for\ detecting\ DDoS\ attacks:\ a\ systematic\ review,\ Soft\ Comput.\ (2022).\ https://doi.org/10.1007/s00500-021-06608-1.$
- [24] A. Pollini, T.C. Callari, A. Tedeschi, D. Ruscio, L. Save, F. Chiarugi, D. Guerri, Leveraging human factors in cybersecurity: an integrated methodological approach, Cogn. Technol. \& Work. 24 (2022) 371–390.
- [25] M.A. Siddiqi, W. Pak, M.A. Siddiqi, A study on the psychology of social engineering-based cyberattacks and existing countermeasures, Appl. Sci. 12 (2022) 6042.
- [26] N. Yathiraju, G. Jakka, S.K. Parisa, O. Oni, Cybersecurity Capabilities in Developing Nations and Its Impact on Global Security: A Survey of Social Engineering Attacks and Steps for Mitigation of These Attacks, in: Cybersecurity Capab. Dev. Nations Its Impact Glob. Secur., IGI global, 2022: pp. 110–132.
- [27] J. Singh, J. Singh, A survey on machine learning-based malware detection in executable files, J. Syst. Archit. 112 (2021) 101861. https://doi.org/10.1016/j.sysarc.2020.101861.
- [28] X. Ling, L. Wu, J. Zhang, Z. Qu, W. Deng, X. Chen, Y. Qian, C. Wu, S. Ji, T. Luo, others, Adversarial attacks against Windows PE malware detection: A survey of the state-of-the-art, Comput. \& Secur. (2023) 103134.
- [29] J. Singh, J. Singh, A survey on machine learning-based malware detection in executable files, J. Syst. Archit. 112 (2021) 101861. https://doi.org/10.1016/j.sysarc.2020.101861.

- 68 Bouke et al.: SMRD: A Novel Cyber Warfare Modeling Framework for Social Engineering, Malware, Ransomware, and Distributed Denial-of-Service Based on a System of Nonlinear Differential Equations
- [30] M.S. Abbasi, H. Al-Sahaf, M. Mansoori, I. Welch, Behavior-based ransomware classification: A particle swarm optimization wrapper-based approach for feature selection, Appl. Soft Comput. 121 (2022) 108744. https://doi.org/10.1016/j.asoc.2022.108744.
- [31] X. Yang, D. Yang, Y. Li, A Hybrid Attention Network for Malware Detection Based on Multi-Feature Aligned and Fusion, Electronics. 12 (2023) 713.
- [32] M.A. Bouke, A. Abdullah, S.H. ALshatebi, M.T. Abdullah, E2IDS: An Enhanced Intelligent Intrusion Detection System Based On Decision Tree Algorithm, J. Appl. Artif. Intell. (2022).
- [33] M.A. Bouke, A. Abdullah, S.H. ALshatebi, M.T. Abdullah, H. El Atigh, An intelligent DDoS attack detection tree-based model using Gini index feature selection method, Microprocess. Microsyst. 98 (2023) 104823. https://doi.org/10.1016/j.micpro.2023.104823.
- [34] G. Baldini, I. Amerini, Online Distributed Denial of Service (DDoS) intrusion detection based on adaptive sliding window and morphological fractal dimension, Comput. Networks. 210 (2022) 108923. https://doi.org/10.1016/j.comnet.2022.108923.
- [35] D.C. Can, H.Q. Le, Q.T. Ha, Detection of Distributed Denial of Service Attacks Using Automatic Feature Selection with Enhancement for Imbalance Dataset, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2021: pp. 386–398. https://doi.org/10.1007/978-3-030-73280-6_31.
- [36] H. Lin, C. Wu, M. Masdari, A comprehensive survey of network traffic anomalies and DDoS attacks detection schemes using fuzzy techniques, Comput. Electr. Eng. 104 (2022) 108466. https://doi.org/10.1016/j.compeleceng.2022.108466.
- [37] A. Bhardwaj, V. Mangat, R. Vig, S. Halder, M. Conti, Distributed denial of service attacks in cloud: State-of-the-art of scientific and commercial solutions, Comput. Sci. Rev. 39 (2021) 100332. https://doi.org/10.1016/j.cosrev.2020.100332.