

Journal of Applied Artificial Intelligence

https://jaai.sabapub.com

ISSN: 2709-5908

2023 Volume 4, Issue 2: 1-11

DOI: https://doi.org/10.48185/jaai.v4i2.867

Understanding the Impact of Requirements Evolution
and Reaction on Evolution of Software: a Survey and
Comparison

Ahmed Mahdi Salih1,2, *, Mazni Omar3, Osamah Mohammed Alyasiri2,4, Pantea
Keikhorakani2, Sharifah Mashita Syed Mohamad2
1Department of Mathematics, College of Education for Pure Sciences, Tikrit University, Tikrit, Iraq
2School of computer sciences, University Sains Malaysia, Penang, Malaysia
3College of Art and Science, School of Computing, University Utara Malaysia, Kedah, Malaysia
4Karbala Technical Institute, Al-Furat Al-Awsat Technical University, Karbala 56001, Iraq

Received: 17.10.2023 • Accepted: 25.12.2023 • Published: 29.12.2023 • Final Version: 29.12.2023

Abstract: In software systems, the continuous changing of requirements, known as requirements

evolution, is considered one of the significant issues. Requirements' evolution denotes the

postـ deployment changes in the requirements. This article reviews the most related requirements

evolution approaches. Different approaches have been presented in modelling requirements

evolution, managing requirements evolution, and relevant analysis techniques, like inconsistency

detection and change impact analysis. The relevant approaches of requirements evolution can be

generally classified into the impact of evolution and reaction on evolution. The article also has given

a comparison among those approaches. The approaches that have been surveyed in this article

exhibited many limitations. These limitations need to be addressed and coped with for the approaches

to be more effective in managing the evolution of software requirements. One of the solutions to

these limitations is to develop a framework that addresses the modelling and reasoning behind

software requirements evolution. The framework will include evolution rules to capture evolution in

the requirements model, particularly observable rules for capturing potential changes and their

uncertainty and controllable rules for capturing different reactions from the designing aspect.

Keywords: Continuous changing, Requirements' evolution, Evolution uncertainty

1. Introduction

In software systems, the continuous changing of requirements, known as requirements evolution, is

considered one of the significant issues. Practically, requirements evolution is still a major problem

since the constant change makes the traceability and monitoring of requirements complicated and

unreliable. However, it is an unavoidable activity since useful and successful software motivates users

to demand new and improved requirements [1, 2].

Requirements' evolution occurs throughout the development life cycle due to continuous changes.

Requirements' evolution denotes the postـdeployment changes in the requirements. These changes

happen when the system starts operating due to many factors, such as operational environments,

changing technologies, and business needs [3]. These changes may involve qualitative and/or

quantitative features of requirements. For instance, the specifications can be increased or more precise;

* Corresponding Author: ahmad.ballu@tu.edu.iq

https://doi.org/10.48185/jaai.v4i2.867

2 Salih et al.: Understanding the Impact of Requirements Evolution and Reaction on Evolution of Software:

a Survey and Comparison

tacit requirements have to be more explicit, or specifications are no longer needed and may be totally

discarded [4]. Requirements' evolution is unavoidable throughout the software project lifecycle. It can

make the systems faster, more reliable, and more efficient [5].

Additionally, requirements could be evolved to increase the understanding of the problem by the

designers and the users themselves [6].

After this introduction of requirements evolution, an explanation of requirements evolution

perspectives is presented. Then, requirements evolution approaches and their two classes, the impact

of evolution and reaction on evolution, are illustrated, followed by a comparison and discussion of

them. Finally, the conclusion of this article is derived.

2. Requirements Evolution Perspectives

Requirements' evolution is studied within a specific period. This period might be short (a few years)

or long (10 years and above), depending on the lifetime of the software system [7]. Different evolution

perspectives depend on the scenarios of how the study may evolve. Lund et al. [8] defined three

evolution perspectives related to risk analysis: maintenance, beforeـafter, and continuous evolution.

i. Maintenance evolution: This perspective is concerned with updating the documents for an

available system. This perspective will not be considered in this paper as it mainly concentrates

on the solution in advance of requirements model evolution in the early stages.

ii. BeforeـAfter evolution: This perspective expects future contexts through predicting the

unplanned and planned changes in existing models of requirements when the study is complete.

Several evolutions' probabilities will be considered, and each probability can happen. For

instance, the Air Traffic Management (ATM) 2000+ Strategic Agenda [9] and "European Single

European Sky ATM Research Initiative (SESAR)" [10] have defined the direction of the ATM

improvements in the period from 2010 until 2020 to get one or more alternatives of novel tools

of queue management. This management comprises Departure Management (DMAN), Arrival

Management (AMAN), and Surface Management (SMAN).

iii. Continuous evolution: This perspective expects existing contexts' evolution over the study

period, relying on gradually planned changes. The whole period of study will be divided into

many milestones. Within each milestone, the possible changes in the requirements model can be

predicted. Numerous evolution possibilities are also considered.

The critical distinction between the beforeـafter and the continuous evolution is that beforeـafter

evolution is concerned with only one evolution possibility at definite points of time in the future. In

contrast, continuous evolution enables numerous possibilities at definite points [8]. The former can be

collapsed to the latter when there will be a single evolution possibility at each point. Thus, the definition

of continuous evolution here can be considered as the generalization described in the study of Lund et

al. [8].

Furthermore, the changes that Lund et al. [8] have addressed from the perspective of continuous

evolution are considered expectable and gradual evolution that can be defined as time functions.

Journal of Applied Artificial Intelligence 3

Figure 1. Requirements Evolution Perspectives

The expectations can be based on planned developments or wellـfounded predictions. This means

that they are related to the situation in which they were designed to evolve over time, or, in other ways,

they can expect continuous changes over time. Figure 1 shows the perspectives of evolution. In this

figure, the requirements models are represented as clouds. Figure 1 (a) demonstrates beforeـ after

requirement evolution. This evolution examines requirements in a finite and determined period

throughout the study. It can be analyzed throughout this period concerning how the requirement model

will look at the beginning (before the model) and possibly at the end (after the model). Only one after

model will happen [11]. On the other hand, Figure 1 (b) illustrates the continuous requirement

evolution that at the time (t0), RM0 represents the original requirements model that can be evolved to

one of RMi at t1. The evolution constantly occurs at the end of the study (tn). Consequently, the original

requirement model can be one of RMkj. The main distinction between the beforeـafter and the

continuous requirement evolution is that beforeـ after evolution refers to one evolution possibility at

specific points in the future. On the contrary, continuous requirement evolution enables many

possibilities at specific points [12].

3. Requirements Evolution Approaches

The relevant approaches to requirements evolution can be generally classified into 1) the impact of

evolution and 2) the reaction to evolution. Approaches to the impact of evolution aim to identify

possible effects on artefacts (like models and specifications) and security properties or consistency

violations. In contrast, approaches in the evolution reaction propose reactions to requirements

evolution [13].

3.1. Approaches in Impacts of Requirements Evolution

As mentioned before, approaches to the impact of evolution focus on recognizing possible

consequences on artefacts (like models and specifications) and violating security or consistency

properties. There are many approaches related to the impact of requirements evolution. The most

related of them are explained in Table 1.

Table 1. Summary of the approaches in impacts of requirements evolution

No
The

Approach
Aims Main Contributions Main Limitations

1

“Viewpoint-

Oriented for

Restructuring

Requirements

Specification

[14]”

Revision and analysis approach

for restructuring software

requirements. Discover

inconsistency and manage

changes.

Decomposing requirements

specifications into parts

Track and analyze evolutionary changes in

the original requirements specification.

Allow evolutional changes to occur and

verify their impact on requirements

satisfaction.

Manually performed.

Depends on personal experiences

(not so accurate).

The domain-dependent rules are

hard-coded into the approach.

4 Salih et al.: Understanding the Impact of Requirements Evolution and Reaction on Evolution of Software:

a Survey and Comparison

No
The

Approach
Aims Main Contributions Main Limitations

2

“Change Impact

Analysis Using

Use Case Maps

(UCMs) [1]”

Change impact analysis.

Applies both slicing and

dependency analysis at the Use

Case Map specification level.

Illustrate the approach's

applicability with a case study

conducted on a telephony system.

Identify potential consequences of a

change.

Estimate what needs to be modified to

accomplish a change.

Adapt functional and nonfunctional

requirement changes without destroying

the integrity of the underlying system

architecture.

Requires dynamic information to

minimize the size of UCM's slices.

Lack of measurements of impact

analysis prediction at the UCM

level.

3

“Formal

Concept

AnalysisـBased

(FCA) [15]”

Addressed the problem of

controlling the evolution of

requirements during the

software development process.

Deal with requirements stated in

natural language and address the

inconsistency among

requirements belonging to various

evolutionary stages.

Requirements of various evolutional

stages have traceability connections to the

others.

Detect errors in evolution from one

requirement to another in the different

stages.

It is hard to analyze more extensive

systems.

The difficulties of modelling

software entities as components of

Formal Concept Analysis (FCA).

Concept interpretation is a hard and

time-consuming task.

4

“UML 4PF

Profile and Tool

Assistance of

Evolutionary

Requirements

[16]”

Performing requirements

evolution is achieved by

identifying the rules of each

requirements engineering step.

It was developed based on the

eclipse modelling framework.

The requirements' evolution method is

embedded in an improvement process.

The determined number of operators and

rules helps conduct software evolution.

It lacks quantitatively systematic

reasoning for supporting decision

makers to select the system design

alternatives that can be more

evolutionـresilience.

Do not consider requirements

evolution uncertainty.

5

“SeCMER

Method for

Managing

Requirements

Evolution [17]”

SeCMER is a tool for

requirements evolution

management developed in the

context of the SecureChange

project.

Addresses the before-after

evolution perspective.

Manage evolution developed in

the context of secure change

projects.

The tool allows modelling the

evolution of the requirement

model as the effect of introducing

the (System Wide Information

Management).

Provides support for:

Modelling requirements evolution in Si*

modelling language.

Managing Changes based on rules of

evolution.

Argumentation-based security analysis

The tool supports the automatic detection

of requirement changes and violation

of security properties using change-driven

transformations.

Some concepts cannot map from

one formalization to another.

Some modelling elements map to

many corresponding modelling

elements in other formalizations.

6

“Creative

Strategic

Scenarios for

Preparation to

Requirements

Evolution [4]”

Focus on Creative Strategic

Scenarios as predictive models of

software evolution for

sociotechnical systems in

organizations.

Combine Strategic Planning and Creativity

theories to generate strategic scenarios that

could predict Organizational Changes.

Integrate scenarios and i* modelling

mechanism to analyze the impacts of

organizational change.

The i* goal modelling language is

considered complex and hard to

understand its graphical

representation by practitioners.

Requires an iterative

methodological approach because

not all the changes can be

anticipated from the beginning.

Journal of Applied Artificial Intelligence 5

No
The

Approach
Aims Main Contributions Main Limitations

7

“Visualizing the

Effects of

Requirements

Evolution [18]”

Employ a Requirements

Evolution Chart (REC), a

graphical representation of

requirements evolution generated

from issue tickets.

Examine whether a Requirements

Evolution Charts (REC) helps

software engineers conduct an

impact analysis.

The study revealed that engineers in the

REC group identified the affected artefacts

more accurately and quickly than the non-

REC group.

Identify requirements evolution events

based

on combinations of operations in the issue

tickets.

The REC visualizes a series of these events

identified by the mapping rules and the

issue ticket list.

Analyzed only one part

of an extensive document

management system regulated by

laws and regulations (lack of

generalizability).

8

“How do

requirements

evolve over

time?

A case study

investigating

the role

of context and

experiences

in the evolution

of enterprise

software

requirements

[12].”

Conducted a longitudinal,

exploratory singleـcase study of

the life cycle of cloudـbased

enterprise software (ES) in a

medium-sized organization.

Isolate nine mechanisms that

explain how contextual factors

and experiences are

intertwined and shape the

evolution of requirements.

The developed process theory sheds light

on

mechanisms that shape the evolution of ES

requirements.

Sourcing cloudـbased ES changes the

influence of

business divisions in:

Acquisition and configuration activities,

the role of upgrade and customization

procedures, and the influence of the ES'

ecosystem.

The research followed a singleـcase

study methodology (limitation of

results generalizability).

9

“Readiness

model for

requirements

change

management in

global software

development

[19].”

Develop requirements change

management readiness model

(RCMRM) for Global

Software Development (GSD)

Global Software Development

organizations

The developed readiness model can help

organizations reduce their requirements

change management (RCM)

implementation challenges to produce and

maintain quality software.

Researchers can use this model for further

enhancement to reflect the everـ dynamic

nature of industry practices.

The proposed RCMRM effectively

accesses and improves RCM activities in

the context of GSD.

The developed model does not

consider the non-GSD context.

Small number of participating

organizations in the study (a

limited generalization of the case

study results).

10

Effect of

Human-Related

Factors on

Requirements

Change

Management in

Offshore

Software

Development

Outsourcing: A

theoretical

framework [20].

Identify related success factors

(HSFs) and human-related

challenges (HCHs) that could

influence the RCM RCM

(requirement change

management) process in GSD

(Global software development)

organizations.

The study reveals that five out of ten HSFs

and 4 out of ten HCHs are critical for RCM

process implementation in GSD.

Develop a theoretical framework of the

identified factors concerning process

implementation.

The results of this research can help tackle

the complications associated with the

RCM in the GSD environment, which is

vigorous to the success and progression of

GSD organizations.

Numerous articles are missing

enough information about

organization size, while the data

extraction, e.g., from 25 articles,

only 14 discussed organization size

in detail.

Cannot utilize every last one of

assessable advanced libraries, e.g.,

Scopus.

The study needs to conduct a real-

world practitioners’ survey to

identify the more challenges and

success factors of the RCM process

in GSD.

6 Salih et al.: Understanding the Impact of Requirements Evolution and Reaction on Evolution of Software:

a Survey and Comparison

No
The

Approach
Aims Main Contributions Main Limitations

11

Managing The

Uncertainty of

The

Evolution of

Requirements

Models [21].

• Capture the requirements

evolution and its uncertainty.

• Provide a set of metrics with

formal semantics for

reasoning about evolution

uncertainty.

• Automate (with formal

analysis and tool support) the

reasoning that can enumerate

and quantitatively assess

individual design alternatives.

Propose a framework that could capture

the requirements

evolution and evolution uncertainty.

To facilitate the evaluation

of the proposed framework, the study

identifies several success criteria

concerning research questions.

The study is limited to a single

domain and a particular

requirement of engineering

language.

Evolution uncertainty is a kind of

subjective probability; there is a

need to evaluate evolution

uncertainty based on the

interpretation of uncertainty and

the Analytic Hierarchical

Process (AHP), which is used in

the literature to prioritize

requirements.

3.2. Approaches in Reaction to Requirements Evolution

There are several approaches that aim to support the requirements evolution of the systems. Some

of those approaches concentrate on early design phases, while others focus on the phases of

deployment and implementation. There are many approaches related to the reaction of evolution.

The most related of those approaches are explained in Table 2.

Table 2. Summary of the approaches in reaction to requirements evolution

No The Approach Aims Main Contributions Main Limitations

1

“Logical

Framework for

Modelling and

Reasoning of

Requirements

Evolution [22]”

Capturing intuitive aspects to

manage changes happen to

requirements models.

Referring to Fig. 8, RE starts

with the expression of a set of

incomplete goats, the

incomplete Requirements

Model (RMo). Requirements

engineers use defaults and

assumptions to convert these

incomplete sentences into a

complete requirements model

(RMo, RM1, etc). By a series of

revisions, the model is refined

and completed.

Modelling requirements as

theories.

Reasoning on changes through

mapping changes among models.

Did not commit to a specific

modelling language.

Lack of analysis requirements

evolution consequences during the

operations.

2

 “Problem Frames

for Change [23]”

Providing tools can help

analyze and synthesize change

that impacts an organization's

sociotechnical systems.

Problem Frames inspire the

proposed tools.

Introduce a manual process of

change analysis; that is, the

situation beforeـtheـchange is

changed to the situation

afterـtheـchange.

The approach did not use specific

reasoning on changes but instead

captured the before model part, which

is changed.

3

“Incremental

Solutions for

Evolving

Requirements

[24]”

Focus on unknownـunknown

requirements evolution, which

is an evolution that is not

known and cannot determine

when it will occur.

Study some algorithms by

utilizing ATMS (AI's Truth

Maintenance Systems).

Discover new solutions by using as

many old ones as possible the old

solutions.

Minimizing the task number that

needs to be implemented.

Considers only unanticipated

evolution changes; thus, these

changes cannot be modelled.

Requires reducing assumptions

number to be more accurate.

Journal of Applied Artificial Intelligence 7

No The Approach Aims Main Contributions Main Limitations

4

“Qualitative

Reasoning for

Deferential

Relations [25] “

Focusing on runـtime.

The system's dynamic

behaviour is governed by a

group of (in) equations named

"qualitative differential

constraints."

Characterize the controllability

space of software systems in terms

of variation points, requirements

models, indicators, and control

variables.

Lack of essential information that

controllers require of a feedback loop

to adapt their target systems.

The limitation of omitting the effects

of patterns on adaptation flexibility.

5

“Event Condition

Action Rules for

Modelling

Requirements

Evolution [26].”

Described new requirements

families: EvoReqs (Evolution

Requirements) and AwReqs

(Awareness Requirements).

Identify changes in other

requirements when specific

situations are applied.

Allow modelling changes of

requirements models precisely and

explicitly.

Large sets of rules are difficult to

evolve.

The approach is hard to apply to

systems dependent on third-party

services/components or legacy

systems.

6

“Looking into the

Crystal Ball:

Requirements

Evolution over

Time [11].”

Presented a method for

specifying changes in

intentions over time and a

technique that

uses simulation for asking a

variety of 'what if' questions

about goal models.

Understand tradeـ offs in

selecting development

technologies over the goals to have

a functional, practical, useable, and

maintainable tool.

Determine which tasks

must be completed in a prescribed

order and which were independent.

Overall, these strategies were

effective in understanding possible

evolutions of the requirements.

Goal modelling for earlyـ phase

requirements engineering can be

improved by explicitly modelling

and analyzing intention evaluations

over time.

Operationalized intentions' changing

evaluations with the dynamic

functions, but

did not establish that this was the best

representation.

Given the research bias discussed in

the paper, there is a risk that the model

may not be representative

of other iStar goal models.

This paper dealt with only "relative"

times and can be extended by adding

"wall clock time" to the analysis.

7

“Sentiment

Analysis-Based

Requirement

Evolution

Prediction [27].”

Propose a framework that

combines a supervised deep-

learning neural network

with an unsupervised

hierarchical topic model to

analyze user reviews

automatically for product

feature requirements evolution

prediction.

The results of this study contribute

to efforts toward automatic text-

mining analysis for product

requirements engineering.

The approach detected product

features mentioned in the user

review text for different

granularities with sentiment

orientation.

Distributed word embedding can

differ from the training objectives

and language models. Therefore,

the quality of the word embedding

could impact the efficacy of the

sentiment classification results.

The text analysisـbased approach to

product requirements evolution

detection should be adapted to the

implicit context to identify implicit

product features and sentiment.

Used hierarchical Latent Dirichlet

(LDA) to extract software features.

However, LDA is not suitable for

analyzing shorter texts

such as tweets due to the sparsity of

word coـ occurrence patterns in the

individual document [28].

8

“Evaluating

Mutual

Requirements

Evolution of

Several

Information

 Systems [29].”

Proposed and exemplified a

method of eliciting and

evaluating requirements of

several systems together.

The proposed method can help

analysts discover unaware

requirements for each system,

improving each system and its

supported activities.

In this method, analysts can use any

modelling language to focus on

different aspects of systems.

Therefore, this method may

improve the efficiency of human,

time, and space resources and

system development efforts.

The method primarily depends on the

insight of analysts (subjective views).

There is a limitation in managing the

links between model elements.

Therefore, the method must develop a

traceability management tool based

on an existing modelling editor.

8 Salih et al.: Understanding the Impact of Requirements Evolution and Reaction on Evolution of Software:

a Survey and Comparison

No The Approach Aims Main Contributions Main Limitations

9

Formal reasoning

for analyzing goal

models that evolve

over time [30].

Formalize the Evolving

Intentions framework for

specifying, modelling, and

reasoning about goals that

change

over time.

Specify a set of functions that

define how intentions and

relationships evolve.

Use path-based analysis to ask

various “what if” questions about

requirements changes.

Unable to represent all possible

behaviors of model intentions.

Goal models, in general, are

considered to be open-world

artefacts; this means that it is assumed

that a decomposition relationship can

have an additional source,

i.e., a child, that is not yet present in

the model.

The Evolving Intentions framework

requires additional information in the

specification of

the evolving functions and is

therefore limited by the modellers’

ability to express anticipated changes.

10

How do

requirements

evolve during

elicitation? An

empirical study

combining

interviews and

App Store analysis

[13]

Study how requirements get

transformed from initial ideas

into documented needs and

then evolve based on the

inspiration from similar

products.

Select 30 subjects that act as

requirements analysts and

perform interview-based

elicitation sessions with a

fictional customer.

The study empirically showed that

requirements are not elicited in the

strict sense but co-created through

interviews, with analysts playing a

crucial role in the process.

The study also showed evidence

that app store-inspired elicitation

could be particularly beneficial to

completing the requirements.

Only focusing on the requirement

evolution after a software product is

deployed might make the tags less

fitting for requirements before a

product has been deployed [31].

11

Union Models:

Support for

Efficient

Reasoning About

Model Families

Over Space

and time [32]

Proposes union models as a

paradigm supporting the

representation of model

families (for time and space

dimensions) using one generic

model.

Demonstrate empirically

the usefulness of union models for

analyzing a family of models all at

once, compared to individual

models, one model at a time.

Suggests that the use of union

models facilitates efficient analysis

in several contexts.

The study is limited to simple type

graphs, where attributes of model

elements have to be expressed

structurally with named nodes and

edges.

The study also limited to language-

independent, syntactic properties

(which describes the structure of

models) other than semantic

properties (which describe the

behaviour of models, e.g., traces).

3.3. Comparison and Discussion

From the surveys of Tables 1 and 2, it can be noticed that there are limitations in evolution

uncertainty and systematic and quantitative reasoning of many existing approaches of requirements

evolution modelling. These limitations can restrict their utilization in managing the uncertainty of

software requirements evolution. For instance, studies such as Russo, Nuseibeh, & Kramer [14],

Hassine et al. [1], Côté & Heisel [16], Bergmann et al. [17], Schneider [12], and Mehmood [20] have

focused on the issue of management and consistency of requirements without addressing the

modelling and reasoning of requirements evolution uncertainty.

Furthermore, the studies of Zowghi & Offen [22], Brier et al. [23], Ernst, Borgida, & Mylopoulos

[24], Souza et al. [26], and Ferreira [13] proposed the implementation of management or testing

consistency on the evolution of requirements; however, they did not develop an evident approach

for the reasoning of requirements evolution.

Journal of Applied Artificial Intelligence 9

It is observed that the reviewed studies lack a comprehensive framework that can be used for

modelling and reasoning requirements evolution. This modelling and reasoning for the requirement

is essential to predict the most accurate and low-cost requirements for the software systems that

suffer from continuous changes over time.

4. Conclusion and Future Work

Software requirements change and evolve continuously. The evolution of software requirements is

an unavoidable phenomenon during the operation of longـlived software systems because of the

dynamic nature of their operating environments. Therefore, software systems may be unstable or

nonـoperational. Requirements' evolution occurs throughout the development life cycle due to

continuous changes. If this evolution is not appropriately managed, it can cause costly repairs and

time-consuming inconsistencies. The approaches of requirements evolution surveyed in this article

exhibited many limitations. These limitations need to be addressed and coped with for the approaches

to be more effective in managing the evolution of software requirements.

 One of the solutions to these limitations is to develop a framework that addresses the reasoning

behind software requirements evolution. This framework will be based on continuously changing

requirements within the software lifecycle. Furthermore, this framework can be designed with

factors like time, cost, and behaviour. Moreover, the suggested framework will be modelling and

reasoning about the evolution of the requirements model in long-lived software systems. It will aim

to provide a means for studying requirements evolution. The framework will include evolution rules

to capture evolution in the requirements model, particularly observable rules for capturing potential

changes and their uncertainty and controllable rules for capturing different reactions from the

designing aspect (i.e., design choices or design alternatives) to these changes. Incorporating

evolution in requirements models will allow designers to have a global view of the potential

evolution of the system in future.

Future research can focus on the following issues:

• Replicate the empirical studies in another domain rather than ATM (Air Traffic

Management) with different kinds of participants to see whether similar results could be

obtained.

• Replicate the empirical studies with different requirement engineering languages rather than

i*/Tropos to see whether the chosen requirement engineering languages impact the outcome

of the studies.

• Evaluate different aspects of the framework rather than effectiveness, for example, whether

the method is easy to use (i.e., Perceived Ease of Use), whether participants want to apply

the method in practice (i.e., Intent of Use), and so on. These aspects could be obtained by

performing interviews (with and/or without a predefined questionnaire) with individual

participants.

Acknowledgement

The authors would like to express their gratitude to the editorial team and to the anonymous

reviewers for their useful recommendations and constructive remarks.

References

[1] J. Hassine, J. Rilling, J. Hewitt, and R. Dssouli, "Change impact analysis for requirement evolution

using use case maps," in Eighth International Workshop on Principles of Software Evolution (pp. 81-

90). IEEE., 2005, pp. 81-90: IEEE.

10 Salih et al.: Understanding the Impact of Requirements Evolution and Reaction on Evolution of Software:

a Survey and Comparison

[2] B. Vogel-Heuser, A. Fay, I. Schaefer, and M. Tichy, "Evolution of software in automated production

systems: Challenges and research directions," Journal of Systems and Software, vol. 110, pp. 54-84,

2015.

[3] W. Lam and M. Loomes, "Requirements evolution in the midst of environmental change: a managed

approach," in Proceedings of the Second Euromicro Conference on Software Maintenance and

Reengineering (pp. 121-127). IEEE., 1998, pp. 121-127: IEEE.

[4] M. G. Ferreira, "Creative Strategic Scenarios for preparation to requirements evolution," in 2014 IEEE

22nd International Requirements Engineering Conference (RE) (pp. 494-499), 2014, pp. 494-499:

IEEE.

[5] K. Mu, Z. Jin, and R. Lu, "Measuring Software Requirements Evolution Caused by Inconsistency," Int.

J. Software and Informatics, vol. 6, no. 3, pp. 419-434, 2012.

[6] M. Hamill and K. Goševa-Popstojanova, "Common trends in software fault and failure data," Software

Engineering, IEEE Transactions on, vol. 35, no. 4, pp. 484-496, 2009.

[7] R. Scandariato, F. Paci, K. Labunets, K. Yskout, F. Massacci, and W. Joosen, "Empirical Assessment

of Security Requirements and Architecture: Lessons Learned," in Engineering Secure Future Internet

Services and Systems: Springer International Publishing., 2014, pp. 35-64.

[8] M. S. Lund, B. Solhaug, and K. Stølen, "Risk analysis of changing and evolving systems using

CORAS," in Foundations of security analysis and design VI: Springer, 2011, pp. 231-274.

[9] Eurocontrol, " ATM Strategy for the Years 2000+," Brussels, Belgium, vol. vol. I and II., 2003.

[10] SESAR, "SESAR definition phase D3: The ATM target concept," Eurocontrol, Brussels, Belgium, Tech.

Rep, vol. 1550, pp. 0612-001, 2007.

[11] A. M. Grubb and M. Chechik, "Looking into the crystal ball: requirements evolution over time," in 2016

IEEE 24th International Requirements Engineering Conference (RE), 2016, pp. 86-95: IEEE.

[12] S. Schneider, J. Wollersheim, H. Krcmar, and A. Sunyaev, "How do requirements evolve over time? A

case study investigating the role of context and experiences in the evolution of enterprise software

requirements," Journal of Information Technology, vol. 33, no. 2, pp. 151-170, 2018.

[13] A. Ferrari, P. Spoletini, and S. Debnath, "How do requirements evolve during elicitation? An empirical

study combining interviews and app store analysis," Requirements Engineering, vol. 27, no. 4, pp. 489-

519, 2022.

[14] A. Russo, B. Nuseibeh, and J. Kramer, "Restructuring requirements specifications," in Software, IEEE

Proceedings-(Vol. 146, No. 1, pp. 44-53). IET., 1999, vol. 146, pp. 44-53: IET.

[15] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, "Controlling requirements evolution: a formal concept

analysis-based approach," in International Conference on Software Engineering Advances, 2007.

ICSEA 2007 (pp. 68-68). IEEE., 2007, pp. 68-68: IEEE.

[16] I. Côté and M. Heisel, "A UML Profile and Tool Support for Evolutionary Requirements Engineering,"

in 15th European Conference on Software Maintenance and Reengineering (CSMR) (pp. 161-170). ,

2011, pp. 161-170: IEEE.

[17] G. Bergmann, F. Massacci, F. Paci, T. T. Tun, D. Varró, and Y. Yu, "SeCMER: a tool to gain control

of security requirements evolution," in Towards a Service-Based Internet: Springer Berlin Heidelberg.,

2011, pp. 321-322.

[18] S. Saito, Y. Iimura, H. Tashiro, A. K. Massey, and A. I. Antón, "Visualizing the effects of requirements

evolution," in Proceedings of the 38th International Conference on Software Engineering Companion,

2016, pp. 152-161.

[19] A. Akbar, S. Mahmood, Z. Huang, A. Khan, and M. Shameem, "Readiness model for requirements

change management in global software development," Journal of Software: Evolution Process, vol. 32,

no. 10, p. e2264, 2020.

[20] F. Mehmood and S. Zulfqar, "Effect of Human Related Factors on Requirements Change Management

in Offshore Software Development Outsourcing: A theoretical framework," Soft Computing Machine

Intelligence, vol. 1, no. 1, pp. 36-52, 2021.

[21] L. M. S. Tran, "Managing the Uncertainty of the Evolution of Requirements Models," PhD thesis,

University of Trento, 2023.

[22] D. Zowghi and R. Offen, "A logical framework for modeling and reasoning about the evolution of

requirements," in Proceedings of the Third IEEE International Symposium on Requirements

Engineering, 1997 (pp. 247-257). IEEE., 1997, pp. 247-257: IEEE.

[23] J. Brier, L. Rapanotti, and J. G. Hall, "Problem-based analysis of organizational change: a real-world

example," in Proceedings of the 2006 international workshop on Advances and applications of problem

frames (pp. 13-18). ACM., 2006, pp. 13-18: ACM.

Journal of Applied Artificial Intelligence 11

[24] N. Ernst, A. Borgida, and I. Jureta, "Finding incremental solutions for evolving requirements," in

Requirements Engineering Conference (RE), 2011 19th IEEE International (pp. 15-24). IEEE., 2011,

pp. 15-24: IEEE.

[25] V. E. S. Souza, A. Lapouchnian, and J. Mylopoulos, "System identification for adaptive software

systems: a requirements engineering perspective," in Conceptual Modeling–ER 2011: Springer Berlin

Heidelberg., 2011, pp. 346-361.

[26] V. E. S. Souza, A. Lapouchnian, K. Angelopoulos, and J. Mylopoulos, "Requirements-driven software

evolution," Computer Science-Research and Development, vol. 28, no. 4, pp. 311-329, 2013.

[27] L. Zhao and A. J. F. I. Zhao, "Sentiment analysis based requirement evolution prediction," vol. 11, no.

2, p. 52, 2019.

[28] S. Lim, A. Henriksson, and J. J. S. C. S. Zdravkovic, "Data-Driven Requirements Elicitation: A

Systematic Literature Review," vol. 2, no. 1, pp. 1-35, 2021.

[29] H. J. P. C. S. Kaiya, "Evaluating Mutual Requirements Evolution of Several Information Systems," vol.

176, pp. 1251-1260, 2020.

[30] A. Grubb and M. Chechik, "Formal reasoning for analyzing goal models that evolve over time,"

Requirements Engineering, vol. 26, no. 3, pp. 423-457, 2021.

[31] N. v. d. Berg, "From Idea to Product: Requirements Evolution within Software Projects," (Master

thesis), Utrecht University, 2023.

[32] S. Alwidian, D. Amyot, and Y. Lamo, "Union Models for Model Families: Efficient Reasoning over

Space and Time," Algorithms, vol. 16, no. 2, p. 105, 2023.

