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Abstract: We describe a simple hybrid methodology to simulate an induction heating process that 

combines observational (black-box) and physics-based (white-box) methodologies. This method 

uses a neural network to predict the process' physical characteristics, which were previously 

unknown. A primary emphasis is placed on monitoring temperature variations within a subsurface 

layer of a bolt sample. The hybrid model incorporates an ordinary differential equation for the 

heating rate, leading to improved data accuracy compared to a standalone black-box model. 

Implementing hybrid models results in higher accuracy and less total error in final temperature 

prediction (≃ 10℃) which outperforms residual neural network with higher total error (≃ 32℃). 

This innovative approach not only improves predictive precision but also simplifies interpretability, 

ultimately serving as a pivotal instrument for the effective management and advancement of 

induction heating operations. 
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1. Introduction 

Induction hardening stands a specialized surface treatment, involving the application of induction 

heating to a metal component's surface using induction, followed by rapid quenching. This sequential 

procedure triggers a martensitic transformation, resulting in the hardening of a thin layer (typically 

ranging from 0.25 to 2.5 mm) in the workpiece, commonly composed of steel or cast iron. Notably, 

this transformation exclusively affects the surface while preserving the overall properties of the 

component. The process intricately intertwines electromagnetic, thermal, mechanical, and 

metallurgical aspects, thereby presenting considerable challenges for accurate modeling and 

simulation. Addressing the complex nonlinear equations and establishing the right boundary 

conditions necessitates an in-depth grasp of the various involved factors. However, crucial 

information is often missing, adding complexity to refining and optimizing the induction hardening 

process. 

The finite element method (FEM) stands as a predominant technique in simulating intricate physical 

challenges, notably in contexts like induction hardening. Commonly referred to as "White-Box modeling" [1], 

FEM provides an in-depth, physics-driven representation of intricate interactions within multifarious systems. 

It employs constitutive equations to comprehensively detail various physical domains and their material 
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behaviors. The strength of FEM lies in its adeptness at illustrating processes in intricate structures and systems, 

thus allowing for a deeper understanding and meticulous optimization of each interaction.  

Despite its advantages, the physical modeling approach using FEM does have certain limitations. 

One of the main drawbacks is the intensive computational demands it entails. Simulation times can 

often exceed desirable time frames, making real-time or fast-response applications challenging. 

Additionally, while the accuracy achieved with FEM is commendable, it may still fall short in certain 

scenarios, especially when dealing with highly nonlinear or complex phenomena. Another challenge 

is deriving inverse models for process control, which can be particularly difficult and time-

consuming. Inverse modeling involves finding the inputs that lead to a desired output, and it may 

not always have unique or straightforward solutions. Also, making correct physical models requires 

a lot of knowledge about the system being modeled and the parts that make it up. This requirement 

can be problematic for industrial induction hardening, where information on power supply design 

and instrumental characteristics may be scarce or proprietary. The exact measurement of irregular 

and temperature-dependent magnetic hysteresis data is one of the problems that have not been 

answered in physical models of induction hardening. This knowledge is crucial for the 

electromagnetic subsystem, particularly for the generation of volumetric heat close to the sample 

surface, which serves as an input for the thermal component of the multiphysics model. 

Physical modeling is hard, as shown by models of induction hardening using the FEM. This makes 

people turn to "Black-Box modeling" methods like artificial neural networks (ANNs). ANNs are 

adept at mapping intricate nonlinear relationships between processing parameters and subsequent 

material outcomes [2]. However, while ANNs offer considerable advantages, they demand vast 

quantities of high-quality data for effective calibration and training, and their potential for 

extrapolation remains curtailed. Endeavors to optimize and pinpoint parameters within pure black-

box models can be intimidating, especially in the absence of mathematical guiding principles [3]. 

In response to the aforementioned limitations, there has been an emergence of Hybrid Models (HMs). 

These models combine data-based approaches with deep-rooted system understanding based on 

physical and conservation laws [4-7]. Such a synthesis not only bolsters the model's extrapolative 

prowess but also alleviates the data-intensive demands typically associated with neural network 

training. Intriguingly, despite their applicability in various domains, the exploration of HMs within 

the context of induction hardening processes remains in its infancy. 

In this study, we develop and evaluate dynamic hybrid models (HMs) tailored for predicting 

temperature variations within a subsurface layer of a cylindrical bolt during induction hardening. 

The illusive process parameter is crucial to the overall heat equation and is estimated using an ANN 

as part of the HM architecture's many interconnected parts. This inference is then applied to a 

simplified version of the heat equation, which is handled as an ordinary differential equation inside 

the physical framework. Interestingly,  HM’s parameter is temperature sensitive and shows 

nonlinearity with regard to several process factors, including operating power and material 

parameters. These determinants are extrapolated and pinpointed from training datasets. 

Subsequently, the physical equation is subjected to mathematical integration in order to ascertain the 

temporal variations in temperature inside a specific region of the object, sometimes referred to as 

the deep layer. 

Utilizing empirical data derived from an induction heating experimental setup, we systematically 

trained and fine-tuned two distinct variants of HMs. A comprehensive evaluation of these models 

ensues, quantifying their effectiveness in explaining and predicting outcomes. Parallel to this, we 

contrast the prediction skills of these improved HMs with those of a model that relies only on data, 
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namely recurrent neural networks (RNNs). The discussion is concluded with a comparison of the 

benefits and drawbacks of HMs to both black-box models and purely physical models. This analysis 

is particularly relevant within the domain of induction heating process design, optimization, and 

control. 

The following is how the paper is structured: Section 3 discusses the induction hardening technique 

as well as the mathematical model utilized to solve the concerns with electromagnetic-thermal 

coupling. The numerical simulations used for data harvesting, which is essential for model training, 

are described in more detail in Subsection 3.2. Transitioning to Section 4, a detailed exposition of 

both the HM and RNNs is provided. Section 5 delineates the strategies adopted for model 

optimization and parameter calibration. Section 6 contains the findings and a comprehensive 

assessment of the learnt hybrid and RNN models. In Section 7 of this work, we look at how useful 

the hybrid modeling approach is for models and improvements of the induction hardening process. 

Concluding, Section 8 encapsulates salient insights and proffers research conclusions. 

2. Related Work 

Historically, induction hardening processes have predominantly been scrutinized using white box 

modeling methodologies like mathematical models, FEM, and Multiphysics methods. A notable 

contribution in this domain was made by Hömberg [8], where the author formulated a mathematical 

representation for the induction hardening of steel. This model accommodated electromagnetic 

influences responsible for the heating and thermomechanical impacts leading to the hardening. A 

more intricate analysis was performed by Barglik et al. [9], wherein they approached induction 

hardening of gear wheels through nonlinear partial differential equations. This method encompassed 

the magnetic and temperature field distributions with an assumption that all involved material 

parameters are temperature dependent. 

In the realm of FEM and Multiphysics, Yuan et al. [10] designed a comprehensive finite element 

analysis model, which encompassed various facets, from the electromagnetic induction heating to 

the quenching process. Their primary objective was to identify the ideal hardness distribution in the 

workpiece by modulating the AC current density distribution. In a similar thread, Candeo et al. [11] 

embarked on a coupled electromagnetothermal simulation targeting the hardening of gear contours. 

They employed a 3-D FEM Multiphysics technique to achieve this. 

Apart from traditional approaches, black-box modeling has also carved a niche in induction 

hardening research. A significant work in this context was by Wang et al. [12] where they harnessed 

neural networks that were trained on FE simulation data. Their core objective was to finetune the 

distribution of eddy currents for optimal temperature control on the work strip's surface. Further, 

Urbanek et al. [13] ventured into approximating the convection coefficient using ANNs. This 

coefficient is pivotal in modeling the heat exchange dynamics between the heated sample and its 

ambient environment. Penha et al. [14] extended the applicability of ANN models to predict the 

steel's hardness, factoring in tempering time and temperature. 

Compared to the previous works, our study claims novelty in its application of hybrid semiparametric 

models for induction hardening, resonating with the pioneering concept proposed by Psichogios and 

Ungar [3]. We believe this to be the inaugural endeavor in leveraging such models for this specific 

process. 
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3. Induction Hardening 

3.1. Background and Principle 

Induction hardening is a widely utilized technology in the metals production industry, represented 

for its efficiency and resource-saving capabilities. Central to this technique is the electromagnetic 

induction mechanism, which generates heat in metallic objects by inducing eddy currents. The 

successful execution of induction hardening hinges on the precise calibration of several process 

parameters, including frequency, current, voltage, dwell time, and the stipulated quenching 

condition. The choice of these parameters is intrinsically linked to the sample's geometry and the 

targeted results of the heat treatment. Notably, the dwell time exhibits variability: it spans mere 

seconds in applications like surface hardening, extends to tens of seconds for specialized applications 

such as bearing journals, and might even stretch to several minutes when performing through 

hardening and the following tempering on steel rods [1]. 

Figure 1(a) illustrates the stages of heating, quenching, and tempering intrinsic to steel rod 

processing. When the sample is heated above the austenitization temperature, the microstructure 

undergoes a first-stage transformation into austenite (𝛾 -phase). During this phase, grain expansion, 

redistribution, and carbon dissolution might take place. Following rapid quenching, martensite is 

created, which has a high strength but poor toughness. To achieve the desired toughness, a further 

inductive heating process is used to temper the martensite. Time and temperature during this cooling 

process have an impact on how precipitates develop and how the internal tensions in the martensitic 

structure relax, which is crucial for determining the final characteristics of the material. 
 

 
(a)  

 
(b)  
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Figure 1. (a) The through-hardening of steel rods as an example using the induction hardening phases of iron-based alloys; 

(b) the linked physical issues in the induction hardening process. 

As shown in Figure 1(b), modeling the induction hardening process requires careful consideration 

of four interrelated physical issues: electromagnetic, thermal, metallurgical, and mechanical. For the 

temperature part of models, there are established methods that use the concepts of heat transfer, 

radiation, and convection. Plasticity models are used to assess residual stresses and distortion for the 

mechanical facet [15]. On the metallurgical front, challenges revolve around phase transformations, 

a topic often tackled within the realm of material modeling [16, 17]. On the other hand, there is no 

conventional method for solving the electromagnetic issue, which involves the electric circuit 

including the power source, inductor, and the heated component. The main difficulties result from a 

limited knowledge of the electrical components involved and their operating behavior. Further 

challenges come from understanding how the circuit, inductor, and sample interact; this interaction 

may be thought of as a single circuit. This intricate relationship poses substantial obstacles in 

synchronizing with the other three physical domains. Conventional physics-driven approaches, 

particularly the finite element methods, falter in precisely modeling the pivotal quantity, 𝑞, which is 

essential for transferring from the electromagnetic domain to the thermal sphere, leading to a deficit 

in both certainty and quantitative accuracy. 

In this research, we propose a solution to these challenges using a hybrid modeling methodology, 

with an exclusive focus on the primary heating phase, deliberately omitting the quenching and 

tempering processes. The study delves into the intertwined issues of electromagnetic and thermal 

domains. Concurrently, this paper elaborates on the intricate endeavor of adeptly regulating 

temperature for real-time implementations. We leverage the merits of the streamlined, efficient, and 

reversible architecture of the HM, making it apt for these specific applications. 

3.2. The Coupled Electromagnetic Thermal Problems 

The interaction between electromagnetic and thermal components in a networked system may be 

shown using the heat equation: 

4. 𝜌𝑚𝐶𝑃
𝜕𝑇

𝜕𝑡
= 𝑞 + ∇⃗⃗ . (𝜅∇⃗⃗ 𝑇) 5. (1) 

The mass density (𝜌𝑚), specific heat (𝐶𝑃), and thermal conductivity (𝜅) of the material are all 

relevant to linked electromagnetic and thermal issues. Connecting the two problems is the volumetric 

heat production source term (𝑞), which is a nonlinear function of process factors such as temperature 

(𝑇), specific heat (𝐶𝑃), thermal conductivity (𝜅), mass density (𝜌𝑚), inductor current (𝐼), and 

generator working power level (𝑃). 

Maxwell's equations, which explain the electromagnetic phenomena, must be solved in order to 

calculate 𝑞. FEM models, which include the discretization of the system's governing differential 

equations, are often employed for this purpose. These techniques, however, often need significant 

processing resources, which renders them unsuitable for simulating large-scale industrial processes. 

Moreover, the accuracy of FEM results is contingent upon the underlying assumptions, selected 

boundary conditions, and incorporated constraints. Specifically for induction heating simulations, 

the inherent non-linearity of boundary conditions, especially those associated with heat radiation and 

convection, exacerbates the modeling challenge. Achieving precise representation under these 

conditions often becomes a meticulous endeavor. Therefore, alternative modeling techniques are 

required that might offer a balance between computational efficiency and accuracy. Such 
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methodologies, ideally, should mitigate the limitations of FEM, paving the way for more streamlined 

modeling and optimization in electromagnetic heating systems. 

To predict the temperature development of a bolt sample heated by induction, we suggest a HM in 

this work. The basic idea is to combine the heat equation's physics-based modeling with a data-

driven framework that calculates the process parameter 𝑞, which cannot be measured. Subsequent 

sections will delve into the details of this approach. 

3.2 Numerical Simulation and Training Data 

This section elucidates the numerical simulation procedure and the data acquisition process 

undertaken in our research to better understand induction heating dynamics. 

Simulation Framework. EMWorks 2023 software was implemented to simulate the interplay 

between electromagnetic and thermal phenomena during induction heating process. Figure 2 

provides a visual representation of the simulated sample's geometry subjected to induction heating, 

which was used to collect data on the heating process. In power control mode, the generator produces 

30 kW at 15 kHz. Adjustments may be made to process factors such operating power, heating time, 

inductor movement, and quenching procedures using the program's user interface. 

 
 

Figure 2. Example geometry for simulating induction heating. 

Sample Specifications. For the simulation, we used a bolt sample with a length (𝐿) of 50 mm and a 

diameter (𝐷) of 10 mm. The sample is made of 50CrMo4 steel grade, with its chemical composition 

detailed in Table 1 [18]. During the simulation, the sample remained stationary, thus eliminating any 

dynamic interplay between it and the inductor. The heating mainly happened in a specific section of 

the sample right below the elliptical inductor, which had a length (𝑙) of 100 mm and an internal 



Journal of Applied Artificial Intelligence   27 

diameter (𝑑) of 50 mm. The average temperature was taken from the sample's top surface in order to 

quantify temperature change. 
 

Table 1. 50CrMo4's chemical make-up (in weight%) 

C Mn Cr Mo Si P S Fe 

0.49 0.71 1.05 0.18 0.27 0.016 0.01 balance 

 

Data Gathering Process. The power level values in Table 2 were used for simulations. The Curie 

temperature was surpassed before the temperature measurements were recorded. Additionally, we 

employed water quenching as a cooling method only after the sample had naturally cooled to a 

certain degree in ambient air. By doing so, the samples weren't subjected to intense thermal and 

mechanical stress.  

Table 2. Simulation power levels and accompanying temperature data collecting. 

Power 

(kW) 
0.9 1.5 2.1 3 4.5 6 7.5 9 10.5 12 13.5 15 

4. Neural Network and Hybrid Model Structures 

For trained models to be accurate and of high quality, feature selection is essential. Several factors 

play a crucial role in the induction heating process, such as the material properties of the sample, the 

geometric dimensions of both the inductor and the sample, the power level at which the operation is 

carried out, the current flowing through the inductor, and the frequency and voltage applied. 

However, we restricted our attention to power level and temperature for the input layer of 

characteristics. Given their ease of use, low cost of training, and more generality, we think models 

trained with these properties are more useful. Our numerical model also allows the operator to enter 

merely the power level into the control system. So, models that are learned with controlled factors 

are more useful and can be used in reverse for optimization or smart induction heating [19,20]. 

Furthermore, because exact material data are sometimes unavailable, it is desirable to train a model 

without explicitly depending on them. 

4.1 Recurrent Neural Network 

Mathematical structures known as neural networks may learn and build connections between input 

and output variables. By using the available data, neural networks have the capability to discover the 

mapping function that exists between these variables. This allows them to understand complex 

nonlinear processes, since they possess intrinsic nonlinear characteristics. For many modeling tasks 

involving sequential data like time series prediction, RNNs are particularly valuable due to their 

capacity to capture dynamics through internal memory cells. Figure 3 provides an illustration of an 

RNN cell and its evolution over time. Similar to feedforward networks, RNNs also have neurons 

link in a sequence to form a directed graph, but they also include an internal loop. A recurrent neuron 

gets the output from the preceding time step, ℎ(𝑡 − 1), at each time step 𝑡. So, each recurrent neuron 

has two separate sets of weights: one for the input 𝑋(𝑡) and one for the output ℎ(𝑡 − 1). While acting 

on unrolled neurons over time, RNN training uses a technique similar to conventional 

backpropagation. The approach includes forwarding the unrolled network and backpropagating the 

cost function gradients over time to change network parameters. 
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Figure 3. RNN cell and its temporal unrolling. 

 

Depending on how complicated their memory cell is, RNNs display a range of structural 

variations. In Figure 3, ℎ stands for a single RNN cell's output, which is influenced by both the input 

received and the state of the cell at the previous time step. Basic RNNs produce the same memory 

cell as its state, as seen by ℎ(𝑡) = 𝑌(𝑡). Lipton et al. [21] present a thorough and up-to-date overview 

on RNNs, including all of the many types of RNNs that have been developed recently, including 

LSTM and GRU. The LSTM and GRU architectures have been specifically developed to effectively 

handle long sequences, whereby the impact of prior memory plays a crucial role in making accurate 

predictions. These structures have found use in a variety of fields, including stock market forecasting 

and natural language processing. 

But in this study, we concentrate on modeling a process where the system's initial state is fixed, 

which is best characterized as an initial value problem. So, it would not make sense to use an RNN 

model learned on long sequences to extend a starting state that is only known at the start of the 

dynamics. As a result, we have decided to use deep basic RNNs, which involve stacking many layers 

of basic RNN cells. This approach enables us to effectively capture the temperature changes within 

a particular region of a cylindrical sample undergoing induction heating. 

4.2 Hybrid Model Structure 

Hybrid modeling involves combining the existing physical understanding of a process with data-

driven structures [3]. The physical information given in Equation (1) completely controls the 

temperature changes within a bolt sample during the induction heating method described in Section 

3. However, Equation (1)'s heat source term 𝑞 represents a process variable that cannot be directly 

identified by study. 

Solving the heat equation requires knowledge of 𝑞, either through numerical or analytical means. 

One approach is to employ FEM simulations to solve the electromagnetic problem. Yet, confusing 

input process control parameters, elusive boundary conditions, and unknown material qualities might 

cause discrepancies between simulation results and actual observations. To address these challenges, 

we propose adopting a hybrid modeling approach that melds experimental data with fundamental 

first principles knowledge. The black-box component of the hybrid model learns the function 𝑞, thus 

complementing the existing knowledge. While it is possible to incorporate all available physical 

knowledge to model the system's behavior, it is common practice to progressively modulate the 

extent of knowledge integration. To facilitate the simplification of Equation (1), we neglect the 
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spatial derivative component associated with conduction, resulting in a modified form of Equation 

(1). 

5. 
𝑑𝑇

𝑑𝑡
= 𝛼(𝑡) 6. (2) 

The equation 𝛼 = 𝑞 / (𝜌𝑚 𝐶𝑃) represents a relationship between variables. The Equation (2) 

represents a physical model that encompasses the interconnections among process variables. This 

might provide difficulties or need a substantial amount of data in order to accurately encapsulate 

these relationships when relying only on data-driven models. The parameter 𝛼 in the model is 

gleaned from simulation data. The streamlined model does not explicitly depend on specific material 

qualities, which is important to note. This is helpful when it is challenging to get reliable material 

data of the highest quality. Through the appropriate use of the parameter 𝛼, the trained hybrid model 

successfully accommodates dependence on material attributes from experimental examples. 

The simplified lumped model of a bolt sample layer's temperature variations in Equation (2) 

implies black body radiation's cooling effect on dynamics. It is customary to take into account the 

effect of black body radiation together with the boundary conditions while analyzing Eq. (1). 

Nevertheless, inside our physical model, we include this component directly into the reduced heat 

equation (Equation 2) by using a lumped mass method. This inclusion shows that partial process 

information improves model performance while maintaining the same training data. The addition of 

this additional term complies with the Stefan-Boltzmann equation and becomes significant in slow 

operations, as those carried out at low power levels. If the heating rate stays low, the sample will 

have plenty of time to cool by radiation under these conditions. The incorporation of this modicum 

of knowledge diminishes the necessity for conducting or amassing numerous simulations at low 

power levels for model training. The benefits and drawbacks of physics-based and data-driven 

models are skillfully balanced by hybrid models. The more advanced physical knowledge is what:  

7. 
𝑑𝑇

𝑑𝑡
= 𝛼(𝑡) − 𝐵((𝑇 + 273.15)4 − (𝑇𝑎𝑚𝑏 + 273.15)4) 8. (3) 

In this context, 𝑇𝑎𝑚𝑏 denotes the prevailing ambient temperature, while 𝐵 represents the coefficient 

that characterizes the rate of heat dissipation from the surface of the bolt. For our specific sample 

shape and numerical simulation, the value of 𝐵 is about 63 × 10-14 C/(s K4). This estimate is based 

on a heuristic evaluation of heat loss. Theoretically, B relies on temperature and process variables, 

therefore optimization like 𝛼 is required. However, for the sake of simplicity in this study, B is 

approximated as a constant. The precise value of 𝐵 is calculated as follows: 

9. 𝐵 =
4𝜖𝜎𝐵

𝐷𝜌𝑚𝐶𝑃
 10. (4) 

The symbol 𝜖 represents the emissivity of the dark body, while 𝐵 is the Stefan-Boltzmann 

constant. 𝐷 refers to the width of the sample, 𝜌𝑚 represents the mass density, and 𝐶𝑃 denotes 

the specific heat. Equation (4) has a temperature-dependent 𝐵 component that might alter when the 

material is heated. Additionally, differences in emissivity with temperature are possible. Therefore, 

if realistic results are required, optimization should be carried out taking into account the temperature 

dependence of both 𝜖 and B. 

To derive the temperature profile, it is necessary to determine the unknown parameter 𝛼, 

representing the temperature rate. The value 𝛼 of is calculated by multiplying the network output by 

a scaling factor 𝛼𝑚, which is part of the HM framework. Figure 4 shows a picture of how the series 

HM was put to use. A feedforward neural network acts as an estimator for the HM, as shown in 
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Figure 5. Using the previous time step's process parameters, the network consults the physical model 

to produce a prediction about the system's condition in the next time step. 

In the remainder of the study, the hybrid model using Equation (2) will be designated as HM1, 

while the hybrid model using Equation (3) will be termed as HM2. 
 

 

Figure 4. Structure for a serial hybrid model. The physical model's input process parameter, 𝛼, is estimated by the neural 

network. 

 

 
 

Figure 5. A feed-forward neural network with one output neuron, a hidden layer of size 5, and an input layer of size 2. 

5. Model Training 

Based on the descriptions provided in Section 4 we constructed three distinct models, RNN, HM1, 

and HM2. Relevant hyperparameters were carefully chosen, including the number of layers, the 

number of neurons per layer, and the activation functions of each neuron. Subsequently, these models 

underwent comprehensive training utilizing the furnished dataset. The ensuing content delineates the 

intricate particulars of this training process. Ultimately, the adeptness of these trained models was 

utilized for the prediction of temperature variations within the rod. 

Finding a mapping function that connects input variables, also known as features, to the desired 

output variables is the goal of training and improving a model. The sample's temperature is the 

important output variable in the context of induction heating. A supervised learning problem is one 

in which the goal variable—in this example, the sample temperature—is already known as a result 

of simulation observations. 
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5.1 Data Preparation 

Input data is often scaled to fit within a certain range in neural network applications. This is because 

normalizing the training data often results in better performance from artificial neural networks 

(ANNs). In our case, linear scaling is employed for data normalization: 

11. 𝑋′ = 𝑋/𝑋𝑚𝑎𝑥 12. (5) 

Here, 𝑋′ represents the normalized value of variable 𝑋, achieved by dividing 𝑋 by its maximum 

value, 𝑋𝑚𝑎𝑥. For the sake of standardization, we fixed the maximum values to 𝑃𝑚𝑎𝑥 = 30 kW for 

power and 𝑇𝑚𝑎𝑥 = 1200 C for temperature.  

All models (RNN, HM1, HM2)'s inputs and outputs are scaled using the method described in 

Equation (5). The data is arranged into batches for the RNN model using the following format: 

[batch-size, seq-length, input-size]. In this configuration, batch size is the first dimension, time 

sequence length is the second, and output size or feature size is the third. The original time series is 

advanced one-time step backward to produce the output vector, which represents temperature. 

The RNN model uses temperature and power level records to anticipate the temperature at time 𝑡. 

As seen in Figure 3, this data is supplied into the RNN cell. The benefit of batch data preparation is 

that the algorithm automatically collects each batch's gradients while the RNN's parameters are being 

optimized. The sequence length, referred to as seq-length in our methodology, is defined as a 

duration equivalent to two-time steps. Following that, the batch size is decided based on the total 

amount of data that is then available. 

The data from Table 2 is divided into training and test sets for the simulation. Table 3 displays the 

creation of the two divisions. Partition 1's training set contains only high-power simulations, whereas 

partition 2's training set contains two low-power simulations. The overfitting issue is addressed by 

generating a new validation set from the training data. During the tuning process, this validation set 

is used to keep an eye on the mean squared error (MSE). 

Table 3. Considered simulation data partitions from Table 2 for model training and testing. 

Partition  

number 
Training data Test data 

1 15, 9, 6 (kW) 13.5, 12, 10.5, 7.5, 4.5 (kW) 

2 15, 9, 6, 3, 0.9 (kW) 13.5, 12, 10.5, 7.5, 4.5, 2.1, 1.5 (kW) 

 

Since each simulation takes a different amount of time, the data is split into training and 

confirmation sets for each simulation on its own. The training set to validation set ratio was decided 

upon as 70% to 30%. For instance, data from the 15-kW simulation is randomized, with 70% 

earmarked for training and 30% for validation. This approach ensures accurate representation of data 

percentages for each experiment (at various power levels) within both the training and validation 

sets. 

5.2 Hyperparameter Identification 

Researchers had to consider a wide variety of factors in order to discover the optimal values for the 

RNN model's hyperparameters. Some of these factors were the number of layers in the RNN, the 

number of neurons included inside each RNN cell, and the activation process of neurons. This search 

was conducted within predefined bounds, spanning from 1 to 10 layers and 2 to 50 neurons. 
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Additionally, the exploration encompassed two activation functions: hyperbolic tangent (tanh) and 

rectified linear unit (ReLU). Our goal was to create a sufficiently large search area that would make 

it easier to identify the RNN network with the most promising performance. 

Upon completing the search, the optimal RNN model was identified, characterized by 7 

fundamental cell layers, and each cell was equipped with 20 neurons. In the realm of activation 

functions, ReLU exhibited superior performance in comparison to the tanh activation function within 

the RNN model. Achieving the lowest MSE, which is determined by dividing the total number of 

data points by the sum of squared errors (SSE), was the key criteria for choosing the best model. 

The HM utilizes a NN that consists of a single hidden layer, which is distinguished by linear 

activation functions for both input and output. Both the tanh and ReLU activation functions were 

studied throughout the evaluation process to determine whether they were acceptable for usage in 

the hidden layer. The input and exit layers were made so that they could handle data with two 

dimensions and one dimension, respectively. Through systematic experimentation, the dimensions 

of the hidden layer spanned from 1 to 10. Intriguingly, the observation surfaced that a hidden layer 

dimension of 10, coupled with a tanh activation function, delivered commendable performance. It is 

worth noting that introducing deeper network architectures into the HMs did not yield significant 

performance enhancements. 

5.3 RNN Training 

The RNN optimization procedure seeks to reduce the total squared errors in estimating the sample's 

temperature over all training instances. This is pursued through the utilization of a predefined error 

function: 

13. 𝑆𝑆𝐸 = ∑ (𝑇𝑖
′ − 𝑇𝑖,𝑒𝑥𝑝

′ )2𝑁
𝑖  14. (6) 

Here, 𝑇𝑖,𝑒𝑥𝑝
′  represents the target output, while 𝑇𝑖

′ corresponds to the output obtained from the 

network. During the training process, the back-propagation algorithm takes center stage, effectively 

deciphering the optimal weights and biases for the neurons within the network. This task is achieved 

by computing the error signal, as delineated in Equation (6), through a meticulous comparison 

between the network's output and the actual targets of the process. Following the network's exposure 

to the entire spectrum of training samples, the accrued error traverses in a retrogressive fashion, 

thereby facilitating the update of the network's parameters. 

In order to mitigate the risk of overfitting during the training process, a vigilant approach was 

adopted. After every 20 iterations, the model's prediction error was painstakingly measured using 

the validation data. If the validation error showed signs of a rising trend, an immediate halt was 

imposed on the training process. To counter the potential entrapment in local minima, a strategic 

maneuver was embraced: the training process underwent ten reinitializations, with network 

parameters being reset during each iteration. The restart method used in this study was enhanced by 

randomly reshuffling both the training and validation sets during each restart iteration. This 

introduced a degree of variation into the training process. 

Following the execution of ten optimization cycles, a precisely selected trained model was 

identified, which had the lowest MSE. Note that the MSE was computed as the SSE divided by the 

number of data points. The next phase entails using the selected model to make predictions and test 

them, especially using simulation data that has not been seen before. 
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5.4 HM NN Training 

HM NN optimization is performed in a manner similar to that of RNN training as discussed in 

Section 5.3, with a few key differences. When using the HM, the temperature output vector is created 

without changing the initial time series. Also, figuring out how to optimize the network settings for 

the mixed structure (shown in Figure 4) is hard because the neural network output 𝛼' does not show 

up directly in Equation (6). This is due to the unavailability of direct measurements for the network 

output. 

However, by leveraging the information from physical knowledge, it is still possible to generate 

an error signal for the neural network. This methodology draws upon sensitivity equations [3]. The 

objective of training the hybrid models is to minimize the MSE as defined in Equation (6) across all 

training examples. Even though 𝛼' is fixed at each sample moment, the SSE gradient may still be 

assessed in relation to this internal parameter. 

15. 𝑒𝑟𝑟𝑜𝑟 𝑠𝑖𝑔𝑛𝑎𝑙 =
𝜕𝑆𝑆𝐸

𝜕𝛼𝑖
′ = 2𝑔𝑖(𝑇𝑖

′ − 𝑇𝑖,𝑒𝑥𝑝
′ ) 16. (7) 

The term 𝑔𝑖, which stands for the slope of the HM output, shows how the output is related to the 

internal constant 𝛼𝑖
′. 

17. 𝑔𝑖 =
𝜕𝑇𝑖

′

𝜕𝛼𝑖
′ 18. (8) 

The error signal described by Equation (7) is necessary for the HM neural network in order to modify 

internal settings and lessen hybrid network error. Using the selected data normalization mapping 

process, the scaled gradients 𝑔𝑖 are linked to the original gradients 𝐺𝑖 =
𝜕𝑇𝑖

𝜕𝛼𝑖
. So, Equation (2)'s 

sensitivity equation may be expressed as follows: 

19. 
𝑑𝐺

𝑑𝑇
= 1 20. (9) 

In a similar vein, for Equation (3), the corresponding expression becomes: 

21. 
𝑑𝐺

𝑑𝑇
= 1 − 4𝐵𝐺(𝑇 + 273.15)3 22. (10) 

By using the Equations (9) and (10) in conjunction with the initial condition 𝐺(𝑡 = 𝑡₀) = 0, together 

with their corresponding Equations (2) and (3), we can deduce the fundamental components 

necessary for calculating the SSE and its gradient with respect to the network output. For every 

sample data, the error signals produced from Equation (7) must be acquired and added, allowing 

backpropagation algorithms to update the weights. 

Using a series of 10-time steps (Figure 4), the HM trains the network. One benefit of this method 

is that it can be used to train a model on many time series with different starting points, as shown in 

Figure 4 by the different 𝑇₀ and 𝑃₀ numbers. Following the neural network's determination of the 

feature vector's (𝑃, 𝑇) corresponding vector, the physical model passes along the input vector's (𝑇₀) 

starting state by way of a set of simplified heat equations. 

In order to mitigate the issue of overfitting during the training process, the model's prediction error 

is assessed on the validation data at regular intervals of 20 iterations. When the validation error 

begins to rise, the training is stopped. To reduce the chance of being stuck in local minima, the 

training procedure is repeated ten times with the network settings reset each time. Also, each time 

the process starts over, both the training set and the proof set are given to the network by chance. 
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Upon doing 10 optimization cycles, a precisely selected trained model is identified based on its 

lowest MSE. This selected model is subsequently enlisted for prediction and testing on previously 

unexplored experimental data. This time, the MATLAB Adam optimizer's learning rate is set at 0.01. 

6. Results 

Figure 6 displays the MSE patterns observed throughout the optimization process for both the HM 

and RNN models. The patterns are shown separately for the training and validation datasets. The 

HMs need a reduced number of training iterations compared to the RNN model because to their 

lower MSE. This divergence draws attention to one benefit of HMs over wholly data-driven methods 

like RNN. Because they include certain aspects of the system's behavior as well as missing 

information, HMs have lower MSE than data-driven models. The MSE of HM1 and HM2 are almost 

identical, with HM2 showing quicker convergence as a result of the inclusion of additional physical 

information. However, for this improvement to occur, the physical model must precisely depict the 

process. We also tested several additional physical models, which had bad results but are not 

included here. Importantly, even with twice as much training time, the RNN model never reaches 

the HMs' low error levels. Moreover, in Figure 6, it's noticeable that the validation error plateaus 

after around 500 iterations, while the training MSE continues to decrease. The optimization stops as 

soon as the validation error begins to increase in order to prevent overfitting on training data. This 

guarantees the trained model's proficiency with new data. Notably, the MSE difference in this 

example between the hybrid and RNN final models is nearly ten times bigger. 

Following the completion of the training trials with a successful SSE minimization, the beginning 

temperature of each simulation was then transmitted across time with the help of the control process 

parameter vector, more especially the power level 𝑃(𝑡). Figure 7 shows a comparison of the RNN 

and HM1 models that were trained using tests with 15 kW, 9 kW, and 6 kW of power. It is interesting 

to note that, even for the trials it was trained on, the trained RNN fails to faithfully represent 

temperature dynamics. But HM1 does well not just on the dataset it was trained on, but also on data 

it has never seen before in the form of test data. But the performance of HM1 gets worse when the 

power is lower (𝑃 ≤ 4.5 kW). This could be because the physical model is simple or because the 

power levels do not change much during training. It's notable that the results of HM1 are less 

satisfactory for 𝑃 = 7.5 kW. Also, the RNN shows that it can create dynamics for the high-power 

scenario with 𝑃 = 15 kW. This is because, given the increased heating rate and higher precision in 

propagating the beginning temperature of a rapid process, the RNN network is better able to capture 

this dynamic. The data was first obtained with a sample frequency of 100 Hz, with a corresponding 

time interval of 0.01 seconds. In order to effectively compare HMs and RNNs, the original dataset 

was modified by down sampling it to a frequency of 10 Hz, with a time interval of 0.1 seconds (𝑑𝑡). 

Figure 8 shows the HM and RNN's prediction performance on the down sampled simulations. The 

bulk of simulations' dynamics are provided by the RNN, however it has exceedingly sluggish 

processes (𝑃 ≤ 4.5 kW). Surprisingly, the performance of the RNN is on par with that of HMs in the 

very challenging simulation scenario, using a power capacity of 15 kW. It is worth noting that this 

evaluation was conducted using the same simulation data that was used to train the models. However, 

when applied to unfamiliar data, such as in the simulations where 𝑃 = 12 kW and 𝑃 = 10.5 kW, the 

performance of the RNN is inferior to that of HMs. Performance- and fit-quality-wise, HM2 

outperforms HM1 for low-power simulations, notably at 𝑃 = 4.5 kW, on both training and unobserved 

data. HM2 accounts for the radiation term, which cools at high temperatures, as mentioned in Section 

4.2. Black-body radiation's influence on temperature changes becomes negligible under conditions 
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typified by high power levels, brief process times, and large heating rates, yielding equivalent 

findings for both HMs. Figure 9 shows the models' root mean squared errors (RMSE = √MSE) on 

both the training and test sets of data. 

 

Figure 6. The MSE on the hybrid and RNN models' training and validation data. The scale on the y axis is logarithmic. 
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Figure 7. HM1 and RNN estimations' dynamic profiles are compared to simulations that use training data with a time step of 

0.01 s. 15-, 9-, and 6-kW power level trials make up the training data set. 

 

Figure 8. HM1 and RNN estimates' dynamic profiles are compared to simulations that use training data with a time step of 

0.1 s. The training data set includes power levels of 15, 9, and 6 kW. 

 

Figure 9. Comparing the RMSE of the HMs with RNN estimations across many simulations. Simulations with 15-, 9-, and 

6-kW power outputs and a time step of 𝑑𝑡 = 0.1 s are included in the training data set. 

 

In order to provide a wider range of values for the process parameter 𝑃, we expanded the original 

training dataset by including two more simulation trials conducted at lower power levels (𝑃 = 3.9 

kW and 𝑃 = 0.9 kW). This supplementation was performed alongside the existing data points for 𝑃 

= 15 kW, 𝑃 = 6 kW, and 𝑃 = 3 kW. Figure 10 presents the results of identification and testing on 

unseen data. Figure 11 clearly illustrates that the RNN beats the HMs when it comes to producing 

dynamics for low-power testing (𝑃 ≤ 3 kW). HM1 and HM2 are both good predictors at moderate 

and high-power levels, whereas HM2 performs better at low power levels. Figure 11's RMSE analysis 

shows that HM2 has superior extrapolation abilities on unseen data. 
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One notable benefit of HM structures in ANNs is their inherent interpretability. This characteristic 

makes them very helpful for the objectives of comprehending and optimizing processes. The heating 

rate is indicated by the internal parameter 𝛼 in the HMs discussed in this study, and it has a physical 

significance. Figure 12 displays the fluctuation of a neural network's output parameter 𝛼 for six 

different power levels. The development 𝛼 of illustrates that several operating regimes exist at 

various power levels throughout the heating process. For high, midrange, and low power trials, 

several 𝛼 profiles are seen. When the power is high, as 𝑃 = 15 kW, both HMs estimate comparable 

values of 𝛼, but as the power falls, their courses diverge. This shows that the heat source follows 

distinct dynamics at lower operating powers. It is significant that the value of 𝛼 always stays positive, 

supporting its physical interpretation as the source component in the heat equation for the process 

under consideration. 

 

Figure 10. HM1 and RNN estimations' dynamic profiles were compared to simulation results using training data with a time 

step of 𝑑𝑡 = 0.1 s. Simulations with power levels of 15, 9, 6, 3, and 0.9 kW make up the training data set. 

 

An important aspect of stand-alone neural networks is their tendency to achieve higher accuracy as 

training datasets grow larger. Because they only use data to infer nonlinear correlations between 

process variables, these models are expected to perform better with large datasets. To evaluate their 

identification capabilities, we conducted training using the entirety of the available simulation data. 

In Figure 13, we present the RMSE of the HMs in comparison to the RNN model. Overall, it is 

evident that HM2, with less total error, consistently characterizes the data more correctly than HM1 

and RNN. Although RNN accuracy is increasing, it is still unable to compete with HMs, especially 

HM2. Furthermore, it is evident that HM2, which integrates the impact of black-body radiation, 

performs better than HM1 in the low power domain. For high powers levels, both HMs exhibit similar 

performance, displaying only marginal differences in RMSE.  
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Figure 11. Comparison of the RMSE of the RNN-based estimations of the HMs for several simulations. Simulations with 

power levels of 15, 9, 6, 3, and 0.9 kW make up the training data set. The training set's sampling period is 𝑑𝑡 = 0.1 s. 

7. Discussion and Applicability of the Presented Approach 

The recommended strategy's particular benefits are examined in greater depth in this section, which 

also acknowledges its inherent disadvantages. We also consider potential extensions to the system 

to get over any current drawbacks. 

7.1 Material Parameter Identification 

It is crucial to accurately determine a material's thermophysical characteristics. This can often 

involve expensive experimental methods or advanced instrumentation. The approach presented in 

this study offers an alternative, providing a practical and cost-efficient means of estimating specific 

heat properties of materials. Using a reformulated equation, this method integrates material 

properties into the aggregated heat equation (Equation 3). 

The methodology used in this research includes the ability to calculate the specific heat of different 

materials. The strategy is briefly explained in the section that follows. To incorporate material 

properties explicitly into the combined heat equation (Equation 3), it is reformulated as: 

23. 
𝑑𝑇

𝑑𝑡
=

𝛼

𝜌𝑚𝐶𝑝
−

𝐵

𝜌𝑚𝐶𝑝
((𝑇 + 273.15)4 − (𝑇𝑎𝑚𝑏 + 273.15)4) 24. (11) 

Here, the specific heat (𝐶𝑝) and mass density (𝜌𝑚) are clearly provided. When thermal conductivity 

is minimal or the temperature distribution is steady after brief temperature changes, Equation (11) 

may be employed. When the sample's volume is tiny (or its dimensions are much smaller than the 

inductor), a slight temperature difference exists between the sample's outside and inside. 

By following the steps outlined in the parts before this one, you can train the HM to get the best 

fit for the temperature and figure out the model parameters 𝛼(𝑇,𝑃), 𝐵(𝑇), and 𝐶𝑝(𝑇). Although the 

material's mass density (𝜌𝑚) is known, it may also be guessed using the same method. The sensitivity 

equations, which create an error to update parameters in the neural network, are formulated as: 

25. 
𝑑𝐺

𝑑𝑡
= [

𝑑𝐺1

𝑑𝑡
,
𝑑𝐺2

𝑑𝑡
,
𝑑𝐺3

𝑑𝑡
] 26. (12) 
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Here, 𝐺 = [𝐺1, 𝐺2, 𝐺3] = [𝜕𝑇/𝜕𝛼, 𝜕𝑇/𝜕𝐶𝑝, 𝜕𝑇/𝜕𝐵], and can be readily obtained from Equation (11). 

It is important to note that two separate neural networks need to be employed in parallel to estimate 

the model parameters. One network is used to estimate 𝛼(𝑇, 𝑃), while the other network estimates 

𝐶𝑝(𝑇) and 𝐵(𝑇), as these two parameters are solely temperature-dependent. 
 

 

Figure 12. The neural network's output 𝛼 for six power levels. Simulations with power levels of 15, 9, 6, 3 and 0.9 kW and 

sampling rates of 1 Hz (𝑑𝑡 = 0.1 s) make up the training data set. 

 

Figure 13. The RMSE of the HM1, HM2, and RNN models for identification. All of the simulations in the training data set 

have sampling times of 𝑑𝑡 = 0.1 s. 

7.2 Model Prediction Error and Contingency Plans 

As shown in Figure 10, the trained HM model performs well on both visible and hidden training and 

test data, although it still makes mistakes in some test trials. For instance, a maximum inaccuracy of 

300°C is noted in the HM's predictions in the simulation when the power output is set at 7.5 kW. 
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Also, for the power levels of 2.1 kW and 1.5 kW, the maximum deviations are around 100°C. These 

deviations and potential strategies to mitigate them can be explained as follows: 

• The increased error observed in low-power simulations can be partially attributed to the use 

of a smaller amount of training data in this power regime, as indicated in Table 3. While 

using HM2 may help minimize error, more training data would improve the model's 

performance even more. 

• Due to the use of simplified physical information, the model is not perfect. This is aided by 

the physical component's lack of a conduction term. Enhancing model performance and 

extrapolation quality can be achieved by implementing a multi-sensor HM. Alternatively, 

integrating a surrogate model based on real experimental data as additional physical 

knowledge is another viable option. 

• There is room for improvement in the approach used to creating a "training set" and a "test 

set" from simulation data. The current approach strictly divides available simulation data 

into two parts: training and test sets, as shown in Table 3. However, finding the best-

performing model using this approach requires exploring various combinations of power 

experiments in the training data. This process demands multiple partitioning and model 

training iterations, which can be computationally intensive. An alternative strategy worth 

exploring is to partition the data in a way that includes training examples from each 

simulation. When there are few simulations available for model calibration, this strategy is 

advantageous. 

This effort was not intended to provide a perfect, completely trained HM for immediate use in 

industrial applications. The focus was on presenting and demonstrating the approach. 

Notwithstanding the constraints imposed by the available data, the approach was effectively shown, 

hence establishing the proof of concept. These difficulties must be addressed, and backup plans must 

be created in order to use a trained HM in actual industrial settings.  

7.3 Application Ranges of the HM in Comparison to FEM 

FEM plays a crucial role in comprehending the complex interactions and interdependencies of 

physical phenomena within intricate systems, particularly in the realm of processes like induction 

hardening. These models offer a qualitative understanding that can be elevated to quantitative 

insights with a comprehensive grasp of the multi-physical system. However, the accuracy of FE 

results hinges significantly on the quality of the input data and the expertise applied in constructing 

and interpreting the model. For instance, finding the boundary conditions of an induction heating 

issue may be difficult due to the intricacy and size of the geometry as well as the operating 

environment. This can provide a number of difficulties. 

Because of how they are made, FE models can also be used to study things like temperature 

differences and local phase changes across the whole sample space. When computational speed is 

not a crucial consideration, these resources prove to be valuable in comprehending the concepts of 

induction hardening and process design. However, for applications that demand fast computation 

times, typically within minutes or even sub-seconds, FE models become too expensive and 

impractical for direct implementation. 

The HM given demonstrates significant improvements in calculation speed, rendering it well-suited 

for two primary applications: a) facilitating prompt decision-making in offline process planning, and 

b) integrating into the system unit to enhance process control. The model is only able to provide data 



Journal of Applied Artificial Intelligence   41 

for one or a small number of spots in the sample, despite being able to provide quantitative findings. 

The precise utilization of this information is crucial. The current study focuses on the through 

hardening of steel rods, which is a reference process. This process involves lower applied frequencies 

compared to surface hardening, resulting in a slower heating process and more uniform temperature 

distributions across the cross-section. This method, which requires just a single surface or, as here, 

subsurface assessment point, is well suited to the current iteration of the model. 

Understanding the temperature development at one location adequately defines the temperature 

distribution throughout the whole cross-section for stable processes such as via hardening. The 

acquisition of temperature data at a single spot is of significant importance in the regulation of an 

inductive heating process with the aim of attaining predetermined goals. The ultimate desired 

qualities, such hardness, are significantly influenced by temperature profiles. By modifying the 

power generator's input values and the necessary holding time, the proposed technique enables the 

generation of a desired temperature profile. This makes it possible to test different power and holding 

time combinations to reduce power usage while preserving the correct temperature profile and 

ultimate hardness. 

The steady heating procedure and the deliberate keeping at a certain temperature make the modeling 

idea for induction tempering well suited. Additionally, the cooling phase of the heat treatment 

process, as seen in Figure 1(a), may be included into the HM, enabling a comprehensive description 

of the thermal aspects of induction hardening. 

When applying the HM to surface hardening, which involves highly non-uniform temperature 

distributions, two approaches can be considered: 

• A FE-based substitute model can be used as a physical model in the HM. This has two main 

benefits. By including a precise physical model, it first improves the HM's extrapolation 

skills by allowing it to give temperature distribution, metallurgical characteristics, and 

solutions for all associated multi-physics issues. The black-box portion of the HM makes 

predictions about the FEM proxy model's unknown parameters using modeling data. 

Material information, border circumstances, B-H features, and other factors are examples of 

these criteria. Second, the FE-based substitution model used in the taught HM has a fast 

execution time, making it a viable option for real-time decision making and monitoring, 

managing, and optimizing operations. Although this approach involves the incorporation of 

complex physical knowledge, it also presents a cost-benefit ratio. Given the financial 

implications, the use of an FE based surrogate model is seen more advantageous in terms of 

augmenting the overall functionalities and boosting the generalizability of the existing HM. 

• The presented HM has the potential to be extended beyond single-point temperature 

modeling by integrating a heat conduction term, allowing for the inclusion of many points 

throughout the cross-section. This may be accomplished by using a larger set of samples 

during the training phase (described in Section 7.4) that include temperature data at varied 

radii. 

7.4 Model Generalization 

In this research, we developed a novel method to accurately replicate the temperature of a specific 

location within a specimen. While understanding the temperature profile of a single point remains 

important in various situations with well-defined objectives (as discussed in Section 7.3), the idea of 

comprehending the broader temperature distribution is increasingly appealing and pertinent. The 
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fundamental approach we employed has the potential to be extended theoretically to calculate 

temperature variations across the entire specimen, including gradients. 

However, achieving this goal requires a more extensive data collection effort that involves 

multiple points distributed throughout the specimen. To illustrate, it is recommended to consider 

how the heat equation is applied when examining a cylindrical sample with axial symmetry:  

27. 𝜌𝑚𝐶𝑝
𝑑𝑇

𝑑𝑡
=

𝜅

𝑟

𝜕𝑇

𝜕𝑟
+ 𝜅

𝜕2𝑇

𝜕𝑟2 + 𝑞(𝑟, 𝑃, 𝑇) 28. (13) 

This extended data collection process will provide a more comprehensive and insightful 

understanding of temperature distribution and variation within the specimen. 

Assuming a uniform thermal conductivity, the process involves training an HM by leveraging the 

physical equation defined in Equation (13). Within this model lie several unknown parameters, 

which encompass the heat source term 𝑞, as well as the first and second spatial derivatives of 

temperature. Neural networks are employed to determine these unknowns, using pertinent features 

such as location 𝑟, material properties, current temperature, and operating power. 

The creation and organization of the sequence of black-box components within this process require 

experimentation and optimization, which present initial challenges. One effective approach for 

predicting the second derivative function is to incorporate the first derivative of temperature from 

one black box as a feature in another black box. The use of radial activation functions by these black-

box neurons is well-suited for approximating continuous functions. However, obtaining a substantial 

volume of high-quality data, along with careful experimental design, is essential to accurately 

estimate spatial derivative functions. 

Notably, it is worth highlighting that the geometric dimensions can be adjusted and employed as 

additional features to train the hybrid model. Such a model can be scaled and applied to a variety of 

dimensions, accommodating different geometric shapes with ease. 

8. Conclusion 

To show how heat induction works in a piece of bolt steel, a mixed modeling method is used. This 

approach makes use of a feed-forward neural network and an ODE to represent a condensed physical 

equation. The physical model's unknown process parameter, 𝛼, which serves as a gauge for the 

heating rate, is determined using the neural network. This hybrid modeling strategy's efficacy is 

contrasted with that of making predictions just utilizing neural network models like RNN. The 

research reveals that the accuracy of the RNN model falls short in describing highly intricate 

dynamic data. Moreover, even when the size of the training dataset is increased, the RNN model 

cannot outperform the hybrid models, particularly HM2. In contrast, the hybrid model is capable of 

interpreting data regardless of the sampling rate. This observation also suggests that hybrid models 

are less susceptible to being excessively influenced by noise or overfitting compared to pure neural 

network models. The study demonstrates that training the hybrid model using a small number of 

simulations already yields satisfactory predictive capability for the model. 

The HM's predicting abilities are improved by better understanding the underlying physics. We 

showed that the model can extrapolate and simulate low-power simulations more effectively than 

HM1, which just employs the heating rate 𝛼 in the physical equation, by including a radiation 

component into the reduced heat equation. By augmenting or enhancing the physical insights, the 

neural network may select a function from a reduced parameter space that can estimate the process 

variable 𝛼 with greater precision. By enhancing stability and durability, this phenomenon 

distinguishes the HM's training phase from RNN training. For instance, the optimization process is 
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constantly steady even with a higher learning rate. Overall, this results in more straightforward HMs 

that are nevertheless capable of estimating crucial process parameters. In contrast to neural networks 

that operate independently, neural networks integrated into a sub model exhibit a more constrained 

search space, resulting in expedited identification of hyperparameters for the sub model. 

In this research, a single process parameter, indicated as 𝛼, was predicted using a neural network. 

Several parameters, including the coefficient 𝐵 in the HM2 radiation term as a function of 

temperature and power, may be predicted theoretically. This sort of hybrid model is essential for 

taking both the heating and quenching processes into account. We are thinking about incorporating 

these studies into our next research projects. 
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