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Abstract: Skin cancer, particularly melanoma, poses a significant global health challenge due to its 

prevalence and mortality rate. Early detection is critical to improving outcomes, as advanced cases 

become increasingly difficult to treat. The advent of Artificial Intelligence (AI) and Explainable AI 

(XAI) techniques has revolutionized dermatological diagnostics by offering accurate and 

interpretable solutions. This systematic review investigates the integration of XAI in skin lesion 

classification, analyzing 22 recent studies published between 2019 and 2023. The studies encompass 

diverse approaches, including deep learning models like CNNs, ResNet, DenseNet, and MobileNet, 

as well as explainability techniques such as Grad-CAM, SHAP, and saliency maps. Results highlight 

significant advancements in accuracy and interpretability, with some models achieving over 99% 

accuracy on datasets like ISIC 2018 and HAM10000. However, challenges persist, including dataset 

imbalances, limited diversity in patient metadata, and generalizability across different skin types and 

imaging conditions. XAI methods, by visualizing model decision pathways, enhance transparency, 

fostering trust among clinicians and enabling seamless AI integration into clinical practice. This 

review underscores the potential of combining state-of-the-art AI models with explainable 

frameworks to address the complexities of skin lesion diagnostics. It advocates for future research 

to prioritize diverse, metadata-rich datasets, innovative optimization techniques, and robust 

architectures to develop reliable, interpretable diagnostic tools. By bridging the gap between 

advanced AI and user understanding, this work contributes to the creation of clinically applicable, 

trustable AI-driven healthcare solutions. 

Keywords: Explainable AI, Skin Lesion, AI in Healthcare, Medical Imaging 

1. Introduction  

Skin lesions, ranging from benign growths to malignant cancers, represent a significant challenge in 

medical diagnostics, exacerbated by their diverse appearances and potential health implications 

(Ahmad et al., 2020; Ahmad et al., 2023; Ballari et al., 2022; Barata et al., 2020; Codella et al., 2019; 

Ding et al., 2023; El-Khatib et al., 2020). Melanoma and non-melanoma skin cancers are among the 

most prevalent and concerning types, necessitating accurate and timely diagnosis for effective 

treatment (Singh et al., 2024; Vavekanand, 2024). Skin cancers remain the most common group of 

diagnosed cancers across the globe, with an estimated 330,000 new cases of melanoma alone diagnosed 

globally (WHO, 2022). Early detection is key; new melanomas are shallower and thinner than those 

that have metastasized, decreasing treatment difficulty (Hoang et al., 2022; Howard et al., 2019; Iqbal 
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et al., 2020; Kassem et al., 2020; Kurasinski & Mihailescu, 2020; Lu & Li, 2020; Metta et al., 2021; 

Ni et al., 2021; Nigar et al., 2022; Olayah et al., 2023; Rehman et al., 2022).  

Skin lesions can be classified into various categories (Figure 1). These include Melanoma (MEL), 

Melanocytic nevus (NV), Basal cell carcinoma (BCC), Actinic Keratosis (AK), Benign keratosis lesion 

(BKL), Dermatofibroma (DF), Vascular lesion (VASC), and Squamous cell carcinoma (SCC). 

Accurate classification is crucial for proper diagnosis and treatment, as each type of lesion has distinct 

characteristics and implications for patient care. Generally, skin cancers develop from sun exposure to 

ultraviolet (UV) rays, as well as artificial lighting from sunlamps and tanning beds. While the majority 

of skin cancers frequently occur and are easily treated, melanoma (MEL) constitutes over 70% of skin 

cancer fatalities despite representing around 5% of all skin cancers. With its propensity to grow and 

spread further than other types of skin cancers, its early detection is paramount to saving lives (El-

Khatib et al., 2020; Nigar et al., 2022; Swamy & Divya, 2021; Tô et al., 2019; Tschandl et al., 2018a, 

2018b; Vavekanand & Kumar, 2024; Vavekanand et al., 2024; Villa-Pulgarin et al., 2021). Challenges 

in accurately classifying skin lesions stem from their variability in appearance due to factors such as 

skin type, lesion morphology, and imaging conditions. Even trained dermatologists find difficulty in 

accurately diagnosing skin lesions, with only extensive training and experience leading to better 

diagnoses.  

 

 
Fig 1. Skin lesions are categorized into melanocytic and non-melanocytic, each with benign 

or malignant subtypes, ultimately leading to a diagnosis of specific lesion types (Barata et al., 

2019). 

Achieving robust classification with artificial intelligence thus requires advanced feature extraction 

techniques and machine learning algorithms capable of discerning subtle differences crucial for 

diagnosis (Vavekanand & Kumar, 2024; Vavekanand et al., 2024). Explainable AI (XAI) methods play 

a pivotal role in enhancing transparency and interpretability in dermatological diagnostics due to the 

black-box nature of the diagnostics models. By employing techniques such as feature visualization, 

XAI elucidates the reasoning behind AI-driven diagnostic decisions. This transparency builds trust 

among healthcare providers and facilitates the integration of AI systems into clinical practice by 

empowering clinicians to understand and validate AI recommendations. Collaborative efforts, such as 

those supported by initiatives like ISIC, are crucial in advancing the field towards more reliable and 

accessible diagnostic tools for skin diseases (Lu & Li, 2020; Metta et al., 2021; Nigar et al., 2022; 

Rehman et al., 2022; Tschandl et al., 2018a, 2018b; Vavekanand & Kumar, 2024; Vavekanand et al., 

2024; Villa-Pulgarin et al., 2021; Wu et al., 2019; Yang et al., 2019; Young et al., 2019; Barata et al., 

2019).  
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This research report delves into the intersection of XAI and skin lesion classification to bridge the 

gap between highly advanced deep learning models and user understanding. By making clear the 

decision-making processes of the deep learning models with XAI, this report aspires to develop an 

accurate and explainable skin lesion classification system. 

2. Literature Review 

Since the inception of the International Skin Imaging Challenge (ISIC) in 2016, research on skin 

imaging and lesion classification has seen steady growth. The integration and accessibility of artificial 

intelligence (AI), combined with the ISIC competitions, have made this field increasingly approachable 

for researchers worldwide. With the growing emphasis on explainable AI (XAI), many studies have 

adopted explainability models in skin lesion classification. Explainable skin lesion classification, 

supported by a critical review discussion table to summarize findings, related works, and the 

background for the proposed method. We focus on three categories: general skin lesion classification 

studies, explainable skin lesion classification papers, and works specifically utilizing the ISIC 2019 

dataset. All reviewed papers were published between 2019 and 2023. 

2.1. Papers on Skin Lesion Classification 

(Allugunti et al., 2022) classified three melanoma types—lesion malignant, superficial spreading, 

and nodular melanoma—using the DermNet dataset. Comparing decision trees, random forest, 

gradient-boosted trees, and CNN classifiers, the CNN model achieved the highest performance with 

precision (91.07%), recall (87.68%), F1-score (89.32%), and accuracy (88.83%). However, the study 

lacked details on the CNN architecture, feature representations, and experimental setup, limiting 

reproducibility. Future work should address these limitations. 

(Ahmad et al., 2020),  fine-tuned ResNet152 and InceptionResNet-V2 models with a triplet loss 

function to classify images from the AI Skin dataset. The models mapped input images to a 128-

dimensional Euclidean space, comparing embeddings using L2 distances. The InceptionResNet-V2 + 

Triplet model outperformed others, achieving an accuracy of 87.42%, recall of 97.04%, and specificity 

of 96.48%. Despite surpassing prior benchmarks, the small dataset (800 images) with broad categories 

like acne and blackheads limited the study. 

(Swamy & Divya, 2021) explored the effects of texture and color features on classification accuracy 

using decision tree and SVM models with the DermNet and DermQuest datasets. While decision tree 

models achieved accuracies of 66% (texture) and 75% (color), SVM models performed better with 

75% (texture) and 83% (color). However, these results lagged behind state-of-the-art techniques, 

emphasizing the need for advanced feature extraction methods combining texture and color. 

(Wu et al., 2019) used the Xiangya-Derm dataset with six common skin diseases, Wu et al. compared 

five CNN architectures: ResNet50, Inception V3, DenseNet-121, Xception, and Inception-ResNet-V2. 

Pre-trained models performed better than untrained ones, despite the dataset containing only facial skin 

images. InceptionResNet-V2 achieved the best precision (70.8%) and recall (77.0%). However, the 

dataset's limited size and lack of fine-tuning contributed to lower performance for specific classes like 

actinic keratosis (Table 1). 

2.2. Explainable Skin Lesion Classification Papers 

(Ahmad et al., 2023) utilized the ISIC 2018 and HAM10000 datasets, they selected features using 

the Butterfly Optimization Algorithm (IBOA) and fused them into Xception, ShuffleNet, and a fusion 

model. Grad-CAM visualizations highlighted prediction regions, and their model achieved accuracy 

(99.3%), recall (99.38%), precision (99.4%), and F1-score (99.38%). Despite high metrics, the study 

recommended optimization improvements, such as Bayesian optimization, for further refinement. 

(Ballari et al., 2022) studied and employed ResNet18 with Grad-CAM on a Kaggle skin disease 

dataset, achieving 96% accuracy. The Grad-CAM outputs provided interpretable visualizations, but 

the study suffered from vague reporting, including an unspecified dataset size and unclear experimental 

details, limiting reproducibility. 

(Barata et al., 2020) developed a hierarchical model inspired by dermatological decision-making for 

ISIC 2017 and 2018 datasets. Using an image encoder (VGG-16, ResNet-50, DenseNet-161), a 

hierarchical decoder, and an attention module, their model achieved sensitivity (86.7%), specificity 

(87.1%), and AUC (92.4%) with VGG-16. While the taxonomy improved accuracy, challenges 

remained in identifying melanoma and handling image transformations. 
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(Ding et al., 2023) model incorporated MobileViT blocks for improved classification accuracy and 

interpretability using Grad-CAM and AblationCAM. On the ISIC 2018 dataset, it achieved precision 

(93.1%), recall (93.2%), F1-score (93.1%), and accuracy (93.2%). Despite strong performance, the 

lack of diverse skin tones and patient indicators limited generalizability. 

(Tschandl et al., 2018) used ResNet-50, Tschandl implemented Content-Based Image Retrieval 

(CBIR) on EDRA, ISIC 2017, and private datasets, achieving an accuracy of 76.2%, AUC (85%), 

specificity (92.2%), and sensitivity (72.7%). CBIR intuitively retrieved visually similar images but 

suffered from a lack of fine-tuning and dataset limitations. 

(Young et al., 2019) combined KernelSHAP and Grad-CAM with Inception CNN to classify skin 

lesion images from a dataset of 6,017 images. The model achieved a mean AUC of 85% and a recall 

of 87%. Despite dual explainability techniques, dataset imbalances and reliance on Inception limited 

its potential. 

(Rehman et al., 2022) compared MobileNetV2 and DenseNet201 with Grad-CAM visualization on 

an ISIC dataset. DenseNet201 achieved the highest metrics: accuracy (95.50%), precision (97.02%), 

F1-score (95.46%), sensitivity (95.96%), and specificity (97.06%). Further optimization methods could 

enhance the model's efficiency (Table 2). 

2.3. ISIC 2019 Related papers  

The International Skin Imaging Collaboration (ISIC) 2019 Challenge focused on classifying skin 

lesions into eight categories using image data, with or without patient metadata. This section 

summarizes key studies utilizing the ISIC 2019 dataset (Table 3). 

2.3.1. Image-Only Classification 

(El-Khatib et al., 2020) achieved 93% accuracy using GoogLeNet, ResNet-101, and NasNet-Large 

with a decision fusion model, but the small dataset size risked overfitting. Similarly, (Kassem et al., 

2020) modified GoogLeNet, achieving 94.92% accuracy, outperforming the ISIC 2019 winning model. 

(Gong et al., 2020) integrated StyleGAN-generated images with ISIC 2019 data, achieving 99.5% 

accuracy using a fusion of 43 CNNs, addressing dataset imbalance but complicating model selection. 

2.3.2. Incorporating Metadata 

(Gessert et al., 2020) winners of ISIC 2019, used metadata with EfficientNet CNNs and a neural 

network, achieving an AUC of 98%. However, metadata inclusion reduced sensitivity. (Tô et al., 2019) 

combined UNet-based segmentation with EfficientNet-B4, though results were not reported. 

2.3.3. Novel Approaches 

(Hoang et al., 2022) proposed an entropy-based segmentation with Wide-ShuffleNet, yielding 

82.56% accuracy. (Iqbal et al., 2020) introduced CSLNet, detecting complex lesion patterns with an 

AUROC of 99.1%, but omitted metadata, potentially limiting performance. 

2.3.4. Explainability 

Meia et al. used ABELE for explainability but highlighted the need for real-world validation (Metta 

et al., 2021). (Nigar et al., 2022) applied LIME with ResNet-18, achieving 94.47% accuracy but lacking 

healthy skin samples for contrast. 

2.3.5. Hybrid Models 

(Olayah et al., 2023) employed geometric active contour segmentation with hybrid CNN 

architectures, achieving 96.1% accuracy. (Villa-Pulgarin et al., 2021) used DenseNet-201 for 

classification with 93% accuracy but noted limited preprocessing as a constraint. 

Overall, these studies highlight the importance of dataset size, metadata, explainability, and hybrid 

approaches in advancing skin lesion classification. 

 

2.4. Literature Review Discussion 

A detailed analysis of 22 studies reveals key trends in skin lesion classification research (Table 1-

3). While traditional machine learning models like decision trees, SVM, and random forests were used 

in a few studies e.g. (Allugunti, 2022; Swamy & Divya, 2021), the majority employed deep learning 
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architectures, particularly trained CNNs. (Ahmad et al., 2023) achieved the highest accuracy of 99.3% 

on the HAM10000 dataset using a fusion model of Xception and ShuffleNet. In ISIC 2019 dataset 

studies, (Gong et al., 2020) attained the best accuracy of 99.50% with their DecisionFusion3 model. 

The ISIC 2019 challenge winner, (Gessert et al., 2020), excelled in metrics like AUC, sensitivity, and 

specificity, with a maximum AUC of 98.00%. 

Feature extraction methods were explicitly noted in only four studies. Three studies employed color 

extraction except (Ahmad et al., 2020), which used CNN-calculated embeddings), while (Swamy & 

Divya, 2021) also included texture features. Most other works relied on automatic feature extraction 

by CNNs. ResNet emerged as the most popular CNN, appearing in seven studies, followed by 

DenseNet (4 studies) and Inception, Inception-ResNet, and GoogLeNet (3 studies each). Fusion 

models, particularly ensembles, showed superior performance. Three studies combined segmentation 

with classification (Hoang et al., 2022), reporting better outcomes compared to non-segmented 

approaches. For explainability, seven techniques were applied, with GradCAM being the most 

common, used in three papers. Saliency maps, attention modules, and SHAP were also noted, with 

Ahmad et al. (Ahmad et al., 2023) achieving the best accuracy among GradCAM-enabled models. 

Despite advancements, limitations persist. Dataset imbalance, especially in the ISIC 2019 dataset 

where the melanoma nevus class comprises 73% of the data, and the lack of diverse skin tones and 

metadata are significant challenges. Only one study (Gessert et al., 2020) incorporated patient metadata 

like age and gender. Future work must prioritize diverse, metadata-rich datasets and explainable 

models. 

2.5. Theoretical Background 

 

2.5.1. MobileNetV3 

MobileNetV3 (Howard et al., 2019) is optimized for mobile and edge devices, employing depthwise 

separable convolutions and neural architecture search (NAS) for efficiency. Features like squeeze-and-

excitation modules and hard swish activation enhance performance while maintaining low 

computational cost. 

2.5.2. Saliency Maps 

Saliency maps (Simonyan et al., 2013) visualize input regions crucial for a model’s decisions by 

computing gradients of the output score concerning input pixels. These maps, often grayscale, reveal 

influential areas and aid in understanding model focus and biases. 

3. Critical Analysis Summary 

Tables 1–3 provide a structured comparison of datasets, feature extraction methods, algorithms, 

explainability models, and performance metrics across the 22 studies. These insights guide 

improvements in skin lesion classification. 

 

Table 1. Summary of related studies to skin lesion classification 

Citations Dataset  
Feature 

representation  
Algorithm  Results  Strength  Weakness  

(Allugunti, 

et al., 2022) 
Dermnet    -    

Decision trees,  

Random 

Forest,  

Gradient 

Boosted  

Trees, CNN  

  

Best results: CNN  

PRE: 91.07% REC: 

87.86%  

F1: 89.32%  

ACC: 88.83%  

High precision, 

recall, accuracy,  

and F1-scores  

The model looks 

promising for 

multiclass 

classification.  

Unclear feature 

representation  
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(Ahmad et 

al., 2023) 

 

 

AI-skin  

Embeddings 

calculated by 

CNN  and 

triplet loss 

function  

ResNet152 + 

Triplet, 

Inception 

ResNet-V2  + 

Triplet  

Best results: 

Inception  

ResNet-V2 + 

Triplet  

  

ACC: 87.42%  

REC: 97.04%  

SPE: 96.48%  

The model 

outperforms 

SOTA works for 

skin disease 

classification  

The model can 

be improved 

with a better 

dataset curated 

by 

dermatologist  

(Swamy & 

Divya, 2021)  

 

Dermnet, 

Dermquest  

Color and 

texture feature 

extraction  

Decision trees, 

SVM  

  

  

Best results: SVM 

ACC:  

  

Color: 75%  

Texture: 83%  

  

Texture feature 

extraction 

increased 

accuracy, and 

implemented 

simple machine 

learning models.  

A larger image 

database is 

necessary for 

better results, 

and better 

feature 

extraction 

needed  

(Wu et al.,  

2019)  

 

Xiangya-

Derm  
 -    

ResNet50, 

Inception  V3, 

DenseNet-121,  

Xception, 

Inception 

ResNet V2  

Best results: 

Inception ResNet 

V2  

PRE: 70.8% 

REC:77.0%  

CNN 

architectures 

showed overall 

satisfactory 

results, pre-

trained CNNs 

perform better 

than non  

Precision and 

recall for AK 

class of best 

model low, 

datasets quality 

and quantity 

must be 

improved.  

  

 

Table 2. Summary of related studies to explainable skin lesion classification 

 

 

Citations Dataset Feature 

representatio

n 

Algorith

m 

Explaina

bility model 

Results Strength Weakness 

 

(Ballari et 

al., 2022) 

Skin disease 

dataset from 

Kaggle 

- ResNet-18 GradCA Model 

accuracy of 

96%, Grad-

CAM 

output 

displays a 

convolution

al feature 

map. 

High model 

accuracy, 

visually 

interpretabl

e results 

Results not 

communicate

d by author, 

dataset not 

specified,  

unknown 

dataset  size 
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(Barata 

et al., 

2020) 

ISIC 2017, 

ISIC 2018 

Color 

normalization 

Hierarc

hical 

taxonomy 

method, 

VGG-16, 

ResNet-

50, 

DenseNet-

161 

Trainable 

attention 

Best 

results on 

ISIC 2017: 

VGG-16  

SEN: 

86.7% , 

SPE: 87.1% 

,AUC: 

92.4% 

Hierarchi

cal 

taxonomy 

bred 

competitive 

results, the 

model 

correctly 

identifies 

relevant 

lesion 

regions, and 

color 

normalizati

on has 

proven to 

improve 

accuracy. 

Melanoma 

class not 

easily 

identified, 

model not 

robust to 

withstand 

varying 

transformatio

ns on images  
 

 
 

 
 

(Ding 

et al., 

2023) 

ISIC-2017, 

ISIC-2018, 

HAM10000 

- HI-

MViT 

GradCAM,

AblationCA

M, 

Best 

results on 

ISIC 2018 

dataset  

PRE: 

93.1% 

REC: 

93.2%  

F1: 93.1% , 

ACC: 

93.2% 

With high 

results, the 

model can 

be 

generalized 

well. 

The dataset 

lacks 

diversity in 

skin tones and 

does not have 

other medical 

indicators. 

 
 

 

(Ahma

d et al. 

2023) 

HAM10000, 

ISIC 2018 

- Xceptio

n, 

Shufflenet

, a fusion 

of both 

models  

Features 

selected 

and fused 

using the 

IBOA 

method 

GradCAM Best results 

HAM10000 

dataset, 

fusion 

model  

ACC: 

99.3%, 

REC: 

99.38%  

PRE: 

99.4% , F1: 

99.38% 

High 

accuracy for 

HAM10000 

dataset, 

GradCAM 

visualizatio

n clear 

Bayesian 

optimization 

may improve 

results 
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(Young 

et al., 

2019)   

HAM10000 - Incepti

on 

GradCA

M, 

KernelSHA

P 

AUC 

(mean): 

85%, REC 

(mean): 

87% 

High 

average 

AUC and 

recall across 

30 different 

models 

Small 

dataset size 

led to 

spurious 

correlations 

by model, 

Inceptiononly 

model limited 

in accuracy 

ceiling 

 
 

 

 

 

Table 3: Summary of related studies to ISIC 2019 classification dataset  

Citation Dataset(s) 
Feature 

Representation 
Algorithm 

Explainability 

Model 
Results Strengths Weaknesses 

(El-

Khatib 

et al., 

2020)  

ISIC 2019, PH2 

Histogram of 

Oriented 

Gradient 

GoogLeNet, 

ResNet-101, 

NasNet-Large, 

decision fusion 

- 

ACC: 

93.00%, 

SPE: 

93.33%, 

SEN: 

92.50% 

The fusion 

model 

outperformed 

individual 

CNNs; with 

high 

accuracy, 

sensitivity, 

and 

specificity. 

Small dataset 

(300 images 

total) 

(Gessert 

et al., 

2020)  

ISIC 2019 - EfficientNet - 

AUC: 

98.00%, 

SEN: 

55.60%, 

SPE: 

99.30% 

Metadata 

inclusion 

improved 

AUC and 

specificity; 

won the ISIC 

2019 

challenge. 

Poor sensitivity; 

unreliable on 

out-of-

distribution 

images 

(Gong et 

al. 2020)  

ISIC 2019, 

StyleGAN 
- 

Fusion CNN 

models 
- 

ACC: 

99.50%, 

AUC: 

98.90%, 

PRE: 

98.40%, 

SEN: 

98.30%, 

SPE: 

99.60% 

GANs 

addressed 

small datasets 

and class 

imbalance; 

with high 

fusion model 

accuracy. 

The best fusion 

CNN 

combination is 

challenging to 

identify. 

(Hoang 

et al. 

2022)  

HAM10000, 

ISIC 2019 
- 

EW-FCM 

segmentation, 

WideShuffleNet 

- 

ACC: 

82.56%, 

SEN: 

82.56%, 

SPE: 

97.51% 

Lightweight 

model with 

fewer 

parameters; 

better than 

non-

segmented 

models 

Underperformed 

compared to 

EfficientNet-B0 
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Iqbal et 

al.  

ISIC 

2017/2018/2019 
- CSLNet - 

ACC: 

89.58%, 

AUROC: 

99.10%, 

PRE: 

90.66%, 

F1: 

89.75%, 

SEN: 

89.58% 

Outperformed 

other models; 

multi-kernel 

design 

recognized 

symmetry and 

patterns 

Lacks 

demographic 

factors like age, 

race, and gender 

(Kassem 

et al., 

2020)  

ISIC 2019 - 

GoogLeNet, 

GoogLeNet + 

SVM 

- 

ACC: 

94.92%, 

SEN: 

79.80%, 

SPE: 

97.00%, 

PRE: 

80.36% 

Outperformed 

ISIC 2019 

winning 

model 

Multiclass SVM 

yielded lower 

test set 

performance 

(Meia et 

al., ) 
ISIC 2019 - ResNet ABELE 

ACC: 

83.80% 

(balanced 

multiclass) 

Saliency 

maps enhance 

explainability 

Lack of 

benchmarks for 

performance 

comparison 

(Nigar 

et al., 

2022)  

ISIC 2019 - ResNet-18 LIME 

ACC: 

94.47%, 

F1: 

94.45%, 

PRE: 

93.57%, 

REC: 

94.01% 

The model 

generalizes 

well; LIME 

provides 

visual 

explainability 

Limited to 8 

disease classes; 

lacks opposing 

examples 

(Olayah 

et al., 

2023) 

ISIC 2019 - 

GAC 

segmentation + 

hybrid CNN-

ANN 

- 

ACC: 

96.10%, 

AUC: 

94.41%, 

SEN: 

88.90%, 

SPE: 

99.44%, 

PRE: 

88.69% 

Optimized 

segmentation 

and hybrid 

model with 

high accuracy 

- 

(Tô et 

al., 

2019)  

ISIC 2019 - 

U-Net 

segmentation + 

EfficientNet-B4 

- - - - 
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(Villa-

Pulgarin 

et al., 

2021) 

ISIC 2019, 

HAM10000 
- 

DenseNet-201, 

Inception-V3, 

InceptionResNet-

V2 

- 

ACC: 

93.00%, 

F1: 

93.00%, 

PRE: 

93.00%, 

REC: 

93.00% 

DenseNet-

201 model 

comparable to 

state-of-the-

art methods 

  

 

 

    

4. Comparative Analysis 

The reviewed studies revealed significant variability in performance and methodological 

approaches. DenseNet-201 and fusion models incorporating metadata consistently outperformed 

image-only models, with accuracy rates exceeding 90%. Explainability techniques such as Grad-CAM 

were frequently employed, offering visual clarity but occasionally at the cost of reduced predictive 

power. Gong et al. (2020) demonstrated that augmenting datasets with synthetic images from 

StyleGAN could mitigate class imbalance, significantly boosting accuracy to 99.5%. Models like 

MobileNetV3, despite their computational efficiency, struggled with generalizability due to limited 

dataset diversity. Studies leveraging hybrid architectures and advanced optimization techniques 

achieved superior results, underscoring the importance of combining robust model designs with 

diverse, high-quality datasets. These comparative insights emphasize the need for balanced 

methodologies that prioritize both accuracy and interpretability (Figure 2). 

 
Fig 1. Illustrating PRISMA flow diagram for the systematic selection of studies, from initial 

screening to final inclusion. 
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5. Results and Discussions  

 

5.1. Results 

The study evaluated 22 research papers focusing on integrating XAI into skin lesion classification. 

The most common explainability methods included Grad-CAM, SHAP, and saliency maps, which 

provided visual insights into model decisions. DenseNet-201 models achieved a high accuracy of 93% 

when combined with metadata, highlighting the value of incorporating additional contextual 

information. Gong et al. (2020) utilized StyleGAN-generated synthetic data to address class 

imbalances, achieving a record accuracy of 99.5%. Conversely, the MLP-MobileNetV3 

implementation fell short of baseline performance, with only 40% accuracy and a mean sensitivity of 

54%, largely due to dataset limitations and insufficient model complexity. These findings underline 

the trade-offs between accuracy and interpretability in XAI applications, suggesting that advanced 

optimization techniques and diverse datasets are critical for improving outcomes. 

 

5.2. Discussion  and Practical Implications 

The integration of XAI in skin lesion classification has demonstrated both potential and challenges. 

Explainability methods, such as Grad-CAM and SHAP, enhance transparency, enabling clinicians to 

validate model decisions. However, achieving high interpretability often results in compromises in 

accuracy, highlighting the need for balanced solutions. Practical hurdles, including dataset imbalances 

and lack of diversity in metadata, limit model generalizability across populations. Additionally, 

regulatory requirements for clinical AI tools necessitate rigorous validation and standardization. Future 

research should focus on interdisciplinary collaboration to bridge technical advancements and clinical 

needs. Prioritizing diverse datasets, leveraging synthetic data, and refining hybrid architectures will 

facilitate the development of reliable, interpretable AI-driven diagnostic tools. To advance the field, 

the following steps are recommended: Employ optimization methods like Bayesian techniques to 

improve model efficiency and accuracy. Incorporate synthetic data generation to address dataset 

imbalances and enhance diversity. Develop hybrid architectures that combine metadata integration 

with advanced augmentation strategies. Establish standardized benchmarks for evaluating XAI models 

in clinical applications.Foster interdisciplinary research collaborations to align AI innovations with 

clinical requirements. 

 

6. Conclusion  

Explainable AI (XAI) represents a pivotal advancement in the field of skin lesion classification, 

addressing the critical need for transparency and trust in AI-driven healthcare. This review highlights 

the significant strides made by integrating XAI into machine learning models, with techniques such as 

Grad-CAM and SHAP enhancing interpretability while providing actionable insights for clinicians. 

However, the findings also reveal persistent challenges, including dataset imbalances, limited diversity 

in metadata, and the trade-offs between interpretability and predictive accuracy. The reviewed studies 

emphasize the importance of diverse, high-quality datasets and advanced optimization methods in 

achieving robust performance. Models leveraging metadata and synthetic data have demonstrated 

superior accuracy and generalizability, yet their implementation in clinical settings remains constrained 

by regulatory and practical limitations. Addressing these issues requires a multidisciplinary approach, 

combining expertise from computer science, medicine, and regulatory affairs. 

Future research should focus on developing hybrid architectures that balance accuracy and 

interpretability, leveraging innovative data augmentation techniques, and fostering standardization in 

model evaluation. By aligning technical advancements with clinical requirements, XAI can transform 

dermatological diagnostics, making AI tools not only more effective but also more acceptable to 

healthcare practitioners and patients. XAI's potential to bridge the gap between complex machine 

learning models and clinical applicability is undeniable. While challenges remain, the path forward 

involves prioritizing data diversity, methodological rigor, and interdisciplinary collaboration. These 

efforts will ensure that XAI becomes an integral part of trustworthy, efficient, and interpretable AI-

driven healthcare solutions, ultimately improving patient outcomes on a global scale. 
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