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Abstract: Cardiovascular diseases represent a significant cause of mortality, with millions of 

electrocardiograms being recorded each year. Therefore, methods of automated diagnosis for 

electrocardiograms are of particular interest. Since electrocardiograms have recognizable features 

and are time-dependent, we propose a model using convolutional layers, convolutional attention, and 

long short-term memory units. The model is trained and validated on the MIT-BIH Arrhythmia 

database, and achieves an accuracy of 99.10%, a precision of 99.09%, a specificity of 99.64%, a 

sensitivity of 95.90%, and an F1 score of 97.47%. 
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1. Introduction  

According to data from the World Health Organization, cardiovascular dis- eases are the leading 

cause of death [1]. Because many cardiovascular diseases arise due to or present with arrhythmias 

(irregular electrical activity of the heart), they can be detected via an electrocardiogram (ECG). 

Electrocardiograms are valuable medical tests, due to the fact that they can be used as di- agnostic tools 

for a wide range of cardiovascular diseases [2], and because they are a non-invasive test [3]. Non-

invasive tests do not break the skin or enter the body, and thus can be administered to patients in a 

relatively straightforward manner. 

As a result of the ease with which an ECG can be obtained, as well as the diagnostic value of the 

signal, data suggests that over 300 million ECGs are recorded annually [4]. The quantity of data 

recorded creates an extremely large burden for cardiologists and other doctors, who must analyze each 

signal to evaluate the presence of arrhythmias. Because of the sheer volume of ECGs recorded and the 

care required to accurately assess each signal, manual analysis of ECGs is a challenge. However, as 

ECGs record the electrical activity of the heart, which in a healthy heart follows a normal cyclical 

pattern (see Figure 1), and in a diseased heart can vary according to predictable patterns [5], ECGs are 

promising candidates for automated diagnosis. Automated diagnosis methods with high sensitivity and 

specificity could be used clinically, saving time for cardiologists and other doctors, who would then be 

able to spend time on more clinically relevant tasks. In a sense, the suitability of ECGs to automated 

diagnosis has already been demonstrated. Early approaches to automated ECG analysis relied on 

handcrafted feature detectors [6], where features could relate to morphological features of an ECG, 

time relationships between different detected features, wavelets, or more. With the advent of deep 

learning, automated ECG analysis began to focus less on handcrafted feature detectors and more on 

neural networks, where different studies have used multilayer perceptrons [7, 8], convolutional neural 

networks [9, 10], or recurrent neural networks [11, 12]. 
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Figure 1: A simplified representation of the cardiac cycle, as captured by an ECG. The P wave, 

QRS complex, and T wave are labeled. 

  

In this study, we present a model for classifying arrhythmias in ECGs that makes use of 

convolutional layers, convolutional block attention, and long-short term memory units. In particular, 

we 

• propose a novel model architecture for classification of arrhythmias, 

• validate the model performance on an extremely common dataset of ECG recordings, and 

• demonstrate the superior performance of the proposed model. 

The remainder of this study is structured as follows. In Section 2, we provide an overview of related 

studies that have explored automated diagnosis of ECGs, with a focus on those that use convolutional 

layers, recurrent layers, or both. In Section 3, we provide a description of the model, including its 

mathematical underpinnings. In Section 4, we introduce the dataset we use to validate the model, and 

discuss the results, with comparisons to other models in the literature. Finally, in Section 5, we 

conclude, providing a summary of what was achieved, as well as discussing future work. 

 

2. Related Work 

Automated diagnosis of arrhythmias is a well-studied field, with regular innovation and progress. 

Perhaps the most well-studied dataset is the Massachusetts Institute of Technology Beth Israel Hospital 

(MIT-BIH) arrhythmia database [13]. Owing to both its ubiquity in the field, as well as the number of 

high quality studies of which it plays a central part, we train and evaluate our proposed model on this 

dataset. We focus on those studies that make use of convolutional layers, recurrent layers, and attention 

in the following. 

Methods from computer vision have been applied to arrhythmia detection by transforming ECGs 

(which are time-series) into images, following which convolutional neural networks may be directly 

applied to the image [14, 15]. One dimensional convolutional neural networks have also been applied 

to ECG analysis [16], as ECGs are inherently one-dimensional (albeit they can have different 

channels). Studies seem to indicate that deep networks perform better than shallow with respect to 

diagnosis [17], which is unsurprising as successive convolutional layers can capture more detailed 

features. One dimensional convolutions have the benefit of not requiring any transformation before 

they can be used to process an ECG. 

Convolutional neural networks have also been combined with other methods from cardiology, 

machine learning and mathematics. For instance, convolutional neural networks have been used in 

conjunction with recurrence plots [18], which is a transformation of a time-series into phase space. 

Similarly, ECGs have been transformed into spectrograms to give frequency information before being 

processed by a convolutional network [19, 20]. Additionally, multiple convolutional neural networks 

have been combined in order to obtain a more accurate diagnosis of ECGs [21]. Convolutional neural 

networks have also been combined with extreme learning machines (ELMs) for ECG diagnosis [22]. 

Methods of isolating parametric features from ECGs (such as QRS complexes or P waves) have been 

used in conjunction with convolutional neural networks [23]. The efficacy of transfer learning has also 

been studied; for instance, with residual neural networks as in [24]. 

While convolutional neural networks are natural approaches in that they are feature detectors, they 

are unable to model sequence-dependent features. Therefore, some studies have used recurrent neural 
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networks and their derivatives in order to incorporate modelling of the sequential nature of ECGs. 

Studies have used both algorithmic ECG preprocessing and ensembling [25], including CNNs, long 

short-term memory units (LSTMs) or other recurrent neural net- works (RNNs), and algorithm 

methods [26]. Similarly, CNNs and LSTMs have been combined with algorithmic methods of 

extracting features from ECGs [27]. Other studies have used wavelets and particle swarm optimization 

(PSO) in order to arrive at a diagnosis [28]. 

Another significant advancement in image processing was the use of attention [29]. Convolutional 

attention has been extremely successful in many different domains, including being used for 

improvements in ResNet [30], in facial recognition [31], and electroencephalography analysis [32]. It 

has also been used successfully in ECG analysis, denoising, and diagnosis [33, 34, 35]. Attention has 

also been studied with respect to the MIT-BIH Arrhythmia database. For instance, it has been used 

with both two-dimensional CNNs [36] and one- dimensional CNNs [37]. Finally, attention has been 

used with feature fusion and convolutions [38]. 

Table 1 gives an overview of these works, including the accuracy achieved by each study. 

 

Table 1: Recent studies using the MIT-BIH Arrhythmia database. 
Year Techniques Accuracy Feature Detection Sequence Aware Attention Disadvantages Reference 

2018 2D CNN 99.05\% ✓ ✗ ✗ Insensitive to sequential features [15] 

2019 2D CNN 97.42\% ✓ ✗ ✗ Insensitive to sequential features [14] 

2019 1D CNN 93.60\% ✓ ✗ ✗ Insensitive to sequential features [16] 

2019 2D CNN 

Spectrogram 

97.10\% ✓ ✗ ✗ Insensitive to sequential features 

Additional transformation required 

[19] 

2019 2D CNN 

Spectrogram 

99.00\% ✓ ✗ ✗ Insensitive to sequential features 

Additional transformation required 

[20] 

2020 CNN Ensemble 99.03\% ✓ ✗ ✗ Insensitive to sequential features [21] 

2020 Neural Network 

KNN 

Feature Detection 

97.70\% ✓ ✓ ✗ Additional transformation required [23] 

2020 CNN 

LSTM 

95.90\% ✓ ✓ ✗ Relatively low accuracy [39] 

2021 2D CNN 

Recurrence Plot 

98.41\% ✓ ✓ ✗ Additional transformation required [18] 

2021 1D CNN 97.41\% ✓ ✗ ✗ Insensitive to sequential features 

Deep network 

[17] 

2021 CNN 

LSTM 

Feature Detection 

Ensembling 

95.81\% ✓ ✓ ✗ Additional transformation required 

Multiple models 

[26] 

2022 CNN 

RNN 

Ensembling 

Data Resampling 

Feature Detection 

94.43\% ✓ ✓ ✗ Complicated pipeline 

Relatively low accuracy 

[25] 

2022 2D CNN 

LSTM 

Scalograms 

99.00\% ✓ ✓ ✗ Additional transformation required [40] 

2023 Particle Swarm Optimization 

Wavelet Transform 

KNN 

98.50\% ✓ ✗ ✗ Heuristic optimization 

Additional transformation required 

[28] 

2023 1D CNN 

Extreme Learning Machine 

98.82\% ✓ ✗ ✗ Insensitive to sequential features [22] 

2023 ResNet 

Transfer Learning 

90.80\% ✓ ✗ ✗ Insensitive to sequential features 

Relatively low accuracy 

[24] 

2023 1D CNN 

LSTM 

Feature Detection 

97.20\% ✓ ✓ ✗ Additional transformation required [27] 

2023 2D CNN 

Attention 

98.68\% ✓ ✗ ✓ Insensitive to sequential features [36] 

2023 1D CNN 

Attention 

96.19\% ✓ ✗ ✓ Insensitive to sequential features [37] 

2023 2D CNN 

Attention 

Feature Fusion 

97.72\% ✓ ✗ ✓ Insensitive to sequential features 

Additional transformation required 

[38] 

  

Automated diagnosis of ECGs is a rapidly-developing field with a wealth of active research. This is 

likely due to its clinical relevancy, and that there is more ECG data than other healthcare data. Many 

studies use some com- bination of data preprocessing, CNNs, RNNs, and attention. Since ECGs have 

notable features which can serve as markers for pathology, it is natural to use convolutional layers. 

Furthermore, since ECGs are time series, it makes sense to use RNNs or LSTMs, so that they can be 

processed in a sequence-dependent manner. This is relevant since certain cardiovascular pathologies 

present in only in a sequence dependent manner. For instance, to differentiate between Mobitz type 1 

and 2 second degree atrioventricular block, the relationship between the P wave and QRS complex 
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needs to be investigated. Finally, while CNNs are capable of detecting features, attention allows 

emphasis of features based on their importance. Therefore, we propose using a model complete with 

convolutional layers augmented with convolutional block attention, followed by bidirectional LSTMs 

for sequential processing. To the best of our knowledge, this is the first study investigating such a 

model architecture. 

 

3. Materials and Methods 

 

Let x ∈ RL×n be an ECG, where l is the number of sampled points, and n is the number of leads. For 

simplicity, in much of the following, we will assume that n = 1; that is, the ECG is recorded using a 

single lead, but it is relatively straightforward to extend the majority of the following to an arbitrary 

number of leads. The following discussion holds for a general signal x ∈ RL×n, but given the subject of 

the study, we will often refer to x as an ECG. 

 

3.1. Convolutions and Attention 

A one dimensional convolution makes use of a filter k ∈ RL
k , where we refer to Lk as the size of the 

filter. The filter is the learned feature detector component of the convolutional layer. Letting xi 

represent the ith entry of x, and xi:j represent entries i through j of x, then a single element of the 

convolution operation is given by 

(x ⋆ k)j = ⟨xi:i+Lk−1, k⟩, (1) 

where x⋆k is used to denote the convolution of x with the filter k, and ⟨·, ·⟩ is the inner product in 

R. Typically, x is padded with zeros so that the convolution operation produces a product of equal 

dimension to the input.  That is, if x ∈ RL, then x is padded so that (x ⋆ k) ∈ RL as well. One 

convolutional layer typically uses many filters k1, . . . , km, so that a number of different features can 

be extracted from the input at once. Stacking convolutional layers with multiple filters means that 

multiple higher-level features are captured. 

While convolutional layers allow for multiple different features to be captured, these will typically 

vary in quality. For example, from the perspective of an ECG, a signal that captures delta waves [41] 

may be useful for diagnosing Wolff-Parkinson-White syndrome, while a signal that captures the peak 

of a QRS complex may not be as valuable diagnostically. While the feature detectors learned by a 

convolutional layer may be significantly more abstract, they still vary in diagnostic utility. 

Convolutional block attention addresses this issue, allowing for weighting of features both spatially 

(along the time axis), which is referred to as spatial attention, and relative to one another, which is 

referred to as channel attention. 

Given x ∈ RL×n, spatial attention makes use of global maximum pooling and global average pooling 

across the channel dimension to produce two elements ms, as ∈ RL×1. These two elements are 

concatenated to create an element ms ⊕ as ∈ RL×2, before being fed through convolutional layer with a 

single filter to obtain sa ∈ RL×1, which is then broadcast to RL×n. This creates a spatial attention map, 

which is able to emphasize or deemphasize elements of each learned feature. Finally, the Hadamard 

product (which we denote ⊙) is taken between sa and x to obtain the spatial attention As. That is, 

As(x) = C(AvgPool(x) ⊕ MaxPool(x)) ⊙ x, (2)  

where C is a convolutional layer with a single filter, and AvgPool and MaxPool denote global average 

pooling and global maximum pooling, respectively. 

Channel attention is very similar to spatial attention, except for the pooling is used across the time 

dimension, yielding elements mc, ac ∈ R1×n. These are then concatenated and fed through a two-layer 

dense network, yielding a channel attention map ca ∈ R1 × n, which is combined with x using the 

Hadamard product to obtain the channel attention Ac. That is, 

Ac = D(AvgPool(x) ⊕ MaxPool(x)) ⊙ x, (3) 

where D is a two-layer dense network. Channel and spatial attention are used sequentially in the 

convolutional block attention module, which we write as 

CBAM (x) = As(Ac(x)). (4). 
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3.2. Long Short-Term Memory 

While feature detectors have proven extremely useful in ECG diagnosis, they are time-insensitive. 

Recurrent neural networks are able to produce an output based on how a sequence evolves in time. 

Therefore, they could be used to capture time-sensitive aspects of an ECG — for example, the 

characteristic PR interval elongation of Mobitz type 1 AV block. Figure 2 visualizes the LSTM layer. 

 

Figure 2: A long-short term memory (LSTM) unit. By ⊕ we denote component-wise addition, 

and by ⊙ we denote component-wise multiplication. Elements in green are layers with either 

sigmoid or tanh activations, and the tanh without a background is component-wise. 

At time t − 1, the LSTM holds a state ct−1, which is updated based on the hidden state ht−1 of the 

LSTM, as well as the input xt at time t (which are concatenated). The LSTM can be more succinctly 

described via the following equations: 

ft = σ(Wf xt + Uf ht−1 + bf )  (5) 

it = σ(Wixt + Uiht − 1 + bi)   (6) 

ot = σ(Woxt + Uoht−1 + bo)  (7) 

c’t = tanh(Wcxt + Ucht−1 + bc) (8) 

ct = ft ⊙ ct−1 + it ⊙ c’t    (9) 

ht = ot ⊙ tanh(ct),     (10) 

where Wf, Wi, Wo, Wc, Uf, Ui, Uo, Uc are learnable matrices with accompanying bias vectors.  

Essentially, the LSTM is able to take as input a sequence and propagate a state ct that captures 

information on the sequence that should be memorized. This state is influenced by the hidden state ht−1 

at the previous timestep, as well as the new input xt. Conversely, the state ct will also affect the new 

hidden state ht that the LSTM outputs. When the signal terminates at tf, htf can be used (or the sequence 

of h1, . . . , htf ) to perform a task of interest. 

In the context of the current study, LSTMs are employed owing to the fact that convolutional layers 

output a sequence of features, which reflect features captured at different steps in the sampling process 

of an ECG. Therefore, they can be used to process the features in a time-sensitive manner, and the 

output can be used for classification that is both sensitive to detected features, as well as the sequence 

in which those features arose. 

 

3.3. Proposed Architecture 

Given the importance of using both convolutional layers as well as LSTM layers, and how attention 

could improve the diagnostic capability of such a model, we propose using a combination of all three 

layers. Table 2 gives an overview of the proposed model. 

The model uses a sequence of three convolutional layers before using convolutional block attention 

to emphasize or deemphasize the features learned at this point. After the convolutional block attention, 
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the sequence of features is input into two bidirectional LSTMs so that higher order time-dependent 

features can be learned based on the features detected from the convolutional layers. Finally, the output 

is fed into a two-layer dense neural network for classification. 

 

Table 2: Summary of the proposed model architecture. 

Layer (Type) Output Shape Parameters 

1D Convolution (None, 120, 64) 960 

Batch Normalization (None, 120, 64) 256 

MaxPooling1D (None, 40, 64) 0 

1D Convolution (None, 40, 64) 20,544 

Convolutional Attention Layer (None, 40, 64) 3,152 

Batch Normalization (None, 40, 64) 256 

MaxPooling1D (None, 13, 64) 0 

LSTM (None, 13, 128) 66,048 

LSTM (None, 64) 41,216 

Dense (None, 16) 1,040 

Dense (None, 5) 85 

Total Parameters: 133,557 
 

Trainable Parameters: 133,301 
 

Non-Trainable Parameters: 256 
 

 

 

The model is trained on 60% of the data, with 20% reserved for validation, and the remaining 20% 

used as a testing set. Training proceeded for 15 epochs, using the Adam optimizer with a learning rate 

of 104 and a batch size of 32. Upon training end, the best weights (based on validation accuracy) were 

restored to the model. Cross entropy loss was used to train the model, which, given predicted class 

probabilities yˆ and a true output y, can be expressed as 

L(y, yˆ) = − ∑ δ(1 − yj) log (yˆj) , (11) 

where δ is the Dirac delta function, and yj is the jth element of y ∈ RL. 

Finally, models are evaluated on a number of different evaluation metrics in order to give a 

comprehensive view of performance. In particular, the MIT-BIH dataset is imbalanced, where the 

majority of beats are normal, and pathological beats are relatively rare. Furthermore, the number of 

different pathological beats differs as well. Therefore, a single accuracy metric can be misleading. We 

present results with respect to accuracy, precision, recall, specificity, and F1 score. Letting TP, FP, TN, 

and FN denote true positives, false positives, true negatives, and false negatives, respectively, the above 

metrics are defined as 

 

Accuracy  = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 

Precision  = 
TP

TP + FP
 

Recall    = 
TP

TP+FN
 

F1 Score  = 2⋅
Precision⋅Recall

Precision + Recall
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Figure 3: The proposed model architecture. A sequence of three convolutional layers before 

convolutional block attention is used. The output is fed into two bidirectional LSTMs before 

being processed by dense layers. 

 

4. Results and Discussion  

4.1. Dataset 

Due to its ubiquity in the literature regarding automated ECG diagnosis, we make use of the MIT-

BIH Arrhythmia database, which consists of a number of two-lead ECG recordings from several 

patients. The dataset itself is separated beat-by-beat, and the beats themselves are evaluated 

independently by two different cardiologists to ensure high quality labeling. 
 

 
Figure 4: A sample of the beats from the dataset, including normal (a), ventricular ectopic (b), 

supraventricular ectopic (c), fusion (d) and unknown (e) beats. 

Figure 4 gives a sample of each beat in the dataset. We note in particular that there are some clear 

differences between certain beats. For instance, normal and fusion beats could be easily distinguished. 

However, for different classes of beats, the differences can be more difficult to distinguish. In 

particular, the pictured normal beat and ventricular ectopic beat are quite similar, except for a 

noticeable difference in the P waves between each lead.  
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Table 3 gives an overview of the dataset. We note in particular that it is very imbalanced, with the 

vast majority of the dataset consisting of normal beats. For the minority of pathological beats, these 

differ rather significantly in number between the different classes. For this reason, we use an 

oversampling technique to increase the size of the minority classes. 

 

Table 3: An overview of the types and numbers of beats contained in the dataset. 

Beat Type Size 

Normal 92,596 

Ventricular Ectopic 7,631 

Supraventricular Ectopic 2,779 

Fusion 802 

Unknown 982 

Total: 104,790 

 

Synthetic minority oversampling (SMOTE) is frequently used to oversample minority classes, 

which relies on generating new points based on k nearest neighbors [42]. However, we make use of 

localized random affine shadowsampling [43] (LoRAS), which samples k points, calculates their 

covariance, and draws new points from the multivariate normal distribution described by the 

covariance. Importantly, LoRAS has been shown to outperform SMOTE [43]; therefore, we make use 

of it to oversample each class to a size equal to the majority class size. 
 

4.2. Results 

    Table 4 gives an overview of the results. In particular, we note that the proposed model 

outperforms recent models in accuracy, precision, specificity, and F1 score. Besides this, it also 

performs very strongly with respect to recall. Figure 5 shows the loss as the model was trained over 

15 epochs. After training concluded, the weights corresponding to the best validation accuracy were 

restored to the model, before the model was tested using the test data. 
 

Table 4: Summary of model results, compared to recent results using the MIT-BIH 

Arrhythmia database. If a result is not reported, it is denoted via the ∼ symbol. 
Study Accuracy Precision Specificity Recall (Sensitivity) F1 Score 

[28] 97.85% 98.08% ∼ 96.23% 97.15% 

[22] 98.82% ∼ 94.73% 93.14% 93.52% 

[24] 90.80% ∼ ∼ ∼ ∼ 

[27] 97.20% 97.20% 99.30% 97.20% ∼ 

[36] 98.68% ∼ ∼ 92.16% 92.02% 

[37] 96.19% ∼ 93.39% 96.41% ∼ 

[38] 97.22% 81.87% 98.72% 83.29% ∼ 

Current Study 99.10% 99.09% 99.64% 95.90% 97.47% 

 

 

 Figure 6 also displays the classification results as a heatmap. We observe that the model performs 

well in distinguishing between each class, particularly those with more samples. Nevertheless, the 

model is able to classify unknown beats with very high accuracy, despite the lower sample size. Future 

work could focus specifically on improving the accuracy for classes with less representation, since 

these are where the majority of beats are missed. 
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Figure 5: The model loss, with training loss shown in blue, and validation loss in orange. 

 
Figure 6: Model classification results in the form of a confusion matrix. 

 

Figure 7 also gives the area under the receiver operating characteristic curve (AUC) for the 

proposed model, for the diagnosis of normal versus pathological beats. We note that the model 

achieves an excellent AUC of 0.997 in this case. Furthermore, when diagnosing normal versus 

pathological beats, the accuracy is 99.20%.  

     Overall, the proposed model demonstrates excellent results, and outperforms several recent 

models using the same dataset. We believe the combination of convolutional layers, attention, and 

LSTM units is able to capture important features of an ECG very well. The model can successfully 

differentiate between a number of different types of beats, and could be used clinically to diagnose 

arrhythmias. The beat-by-beat diagnosis could also lend additional explainability to the diagnosis. 
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Figure 7: Area under the receiver operating characteristic curve for the proposed model. 

4.3. Discussion 

Electrocardiograms represent the electrical activity of the human heart. As the cardiac cycle has 

recognizable features even in a pathological heart, it is reasonable to use convolutional layers to 

capture these features. Attention can be used to further emphasize or deemphasize the learned 

features, so that the model can focus on the more important features. However, ECGs are also time- 

dependent, and different pathologies can present in a time-dependent manner. Therefore, while 

convolutional layers (and attention) are a natural element to include in a model, they could be 

accentuated by recurrent layers. We used bidirectional LSTMs after extracting features with 

convolutional layers so that the extracted features could also be modeled in a time-dependent 

manner.  

    The proposed model performs very well, outperforming recent models using the same dataset. 

Furthermore, the model is relatively lightweight, consisting of only three convolutions, one attention 

module, and two LSTM units. In addition, the model was trained for only 15 epochs; therefore, in 

addition to being a lightweight model, the training time is also relatively minimal. The model 

achieves competitive metrics and could likely be applied in a clinical setting (given segmented beats, 

which can be achieved algorithmically). 

    While the results we achieved are promising, they are limited in a sense by the dataset on which 

they were tested. The MIT-BIH Arrhythmia dataset is unique in that it is labeled beat-by-beat, 

making it an invaluable resource for the development of automated methods for ECG diagnosis. 

Being able to label an ECG beat-by-beat in an automated fashion lends a level of explainability to an 

overall diagnosis from an electrocardiogram, which is of major importance in medical artificial 

intelligence [44]. Nevertheless, the dataset we used consists of two-lead ECGs recorded from 47 

subjects. Therefore, while we expect a model extended to the standard 12-lead ECG would perform 

quite well in a beat-by-beat analysis, no data exists to substantiate this claim. Furthermore, while the 

dataset consists of over 100,000 individual beats, they arise from 47 subjects; thus, the intra-class 

variation between beats may be rather low and not accurately represent the population distribution. 

The author hopes that this study and similar studies will stimulate the release of larger-scale datasets 

with beat-by-beat labeling, specifically for 12-lead ECGs drawn from a larger patient sample. 
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Nevertheless, because the heart functions based on the same principles irrespective of the patient, we 

hypothesize that the model would generalize fairly well to a new population. 

5. Conclusion 

In this study, we demonstrated the value of using convolutions combined with convolutional block 

attention, and bidirectional LSTMs. In particular, extrapolating from the fact that ECGs have important 

recurrent features that arise in a time-dependent manner, we proposed a model architecture that would be able 

to capture both of these elements of an ECG. We validated the model using a well-studied dataset, and 

demonstrated that the proposed model outperforms other state-of-the-art models. 

    Automated ECG diagnosis could save the time of many doctors, allowing them to focus on more pressing 

matters. Therefore, the clinical utility of these methods are clear. Models that can diagnose specific beats of an 

electrocardiogram are particularly valuable, since they provide additional clarity on a diagnosis — instead of 

outputting a single diagnosis for an entire ECG, they can provide a beat-by-beat analysis of an input. 

    The present study used a very well-studied database consisting of two-lead ECGs recorded from 47 patients. 

A limitation of the study is that two-lead ECGs are not as common as the standard 12-lead ECG. To the best of 

the author’s knowledge, this is due to a gap in the available datasets, which we hope will be addressed in 

further dataset releases. While we used a rather shallow convolutional neural network consisting of three 

layers, future work could investigate how increasing the depth of the convolutional neural network (in 

conjunction with attention) affects the results. Furthermore, more advanced sequential methods could be 

explored, such as using transformers. 
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