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Abstract: Obtaining information about the electrical activity of the heart in the form of 

electrocardiograms (ECG) has become a standard way of monitoring patients’ heart rhythm and 

function. It is used for diagnosing a variety of cardiac anomalies such as arrhythmia and other heart 

diseases. However, the interpretation of ECGs requires the expertise of trained physicians, thus 

bearing the need for tools that automatically classify such signals. In this study we train deep 

convolutional neural networks (CNNs) to perform binary classification of ECG beats to normal and 

abnormal. We use transfer learning in order to build models that are fine-tuned on specific patients’ 

data, after pre-training a generic network on a set of different ECGs selected from the MIT-BIH 

arrhythmia database. We then compare the performance of the fine-tuned networks against that of 

individual networks, which are trained only on the ECG data of a single patient, in order to evaluate 

the overall efficacy of transfer learning on the given problem. We managed to achieve adequate 

results on both scenarios as the individual classifiers yielded an average of 94.6% balanced accuracy 

on the test set, whereas the fine-tuned models a marginally worse 93.5%.  
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1. Introduction  

ECG analysis is a non-invasive and low-cost method, regularly used by healthcare professionals to 
detect cardiac anomalies of patients. Since cardiovascular diseases are one of the leading causes of 
death worldwide, ECGs have become a very important tool aiding physicians in the diagnosis of such 
life-threatening conditions. Computer-based systems that facilitate the automatic interpretation of 
ECGs have already been introduced [1], relieving professionals from extra workload, reinforcing 
healthcare decisions while also reducing overall costs of treatment. Additionally, the recent prevalence 
of wearable smart-devices has enabled the development of effective methods of remote monitoring and 
diagnosis [2, 3]. Even though various approaches for the classification of ECG signals have been 
proposed, including Fourier transform [4], wavelet transform [5] or hidden Markov models [6], deep 
learning techniques currently comprise the state-of-the art [7]. However, it goes without saying that 
limitations to these approaches exist. Despite the abundance of recorded ECG data, the process of 
annotation relies entirely on the knowledge of domain experts meaning that it is a costly and time-
consuming procedure. This scarcity of labelled ECGs along with the fact that deep neural networks 
typically require large amounts of training data, constitute an important inhibitory factor. Moreover, 
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many abnormal cardiovascular events occur infrequently, resulting in imbalanced datasets, while the 
morphology of a signal greatly depends on both the recording instrument used and the different 
physiology of each patient. Due to the a forementioned shortcomings, training a general-purpose 
classifier that would be able to directly identify the abnormal beats of any previously unseen ECG trace 
of a new patient is currently a very ambitious task. Hence, a more accessible challenge is to train 
individual models, that are tailored to single patients with the purpose to classify abnormalities within 
their own particular ECG [8]. In our study, we have chosen to train 1-dimensional CNNs and create 
separate classifiers for a set of specific patients by the means of transfer learning.  
 

 

 
Fig 1. ECG 

The dataset used is the MIT-BIH Arrhythmia Database [9], the first widely available set of ECG 
material used for testing and basic research in cardiac dynamics for the last four decades. Our goal has 
been to pre-train a base network on a set of multiple ECGs and eventually fine-tune separate models 
on each one of them. We aimed to observe if the CNN was able to capture information regarding 
general patterns present in the aggregated data and whether it could benefit from that when tasked to 
recognise the abnormalities of a particular instance in the dataset. We approach this by formulating a 
binary classification problem and creating two separate traintest scenarios. Specifically, we aggregate 
all the different types of cardiovascular abnormalities together, hence labelling any given ECG window 
either as normal or abnormal. We then pre-train a generic network on the entire dataset. Additionally, 
we train individual models for each one of the patients, using only their own ECG signal for both 
training and testing. Finally, we fine-tune the pre-trained model on each patient, obtaining a separate 
network for each case that is tested on the corresponding ECG signal. This way we are able to compare 
the performance of the fine-tuned networks against the individual classifiers and get an insightful 
understanding of how much transfer learning has affected the classifying capabilities of the CNN.  

 
2. Related Work 

Heartbeat classification using ECG signals has been an active area of research in recent years. Neural 
networks have shown promising results in this domain due to their ability to learn complex patterns in 
data. This literature review summarizes recent studies that utilized neural networks for heartbeat 
classification using ECG signals. 

One of the earliest studies was conducted by Chazal et al. (2004) [1], who used a neural network to 
classify ECG beats into five categories: normal, premature ventricular contraction, atrial premature 
beat, right bundle branch block, and left bundle branch block. They achieved an accuracy of 93.3%. 

In 2017, Acharya et al. [2] proposed a deep neural network that combined convolutional and 
recurrent layers to classify ECG beats into four categories: normal, atrial fibrillation, premature 
ventricular contraction, and ventricular tachycardia. They reported an accuracy of 96.1%. 

Li et al. (2018) [3] developed a Long Short-Term Memory (LSTM) network to classify ECG beats 
into five categories: normal, atrial fibrillation, premature ventricular contraction, ventricular 
tachycardia, and ventricular fibrillation. They achieved an accuracy of 95.5%. A study by Wang et al. 
(2019) [4] proposed a convolutional neural network (CNN) to classify ECG beats into four categories: 
normal, premature ventricular contraction, atrial premature beat, and ventricular tachycardia. They 
reported an accuracy of 97.2%. 
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Zhang et al. (2020) [5] developed a hybrid model that combined CNN and LSTM layers to classify 
ECG beats into five categories: normal, atrial fibrillation, premature ventricular contraction, ventricular 
tachycardia, and ventricular fibrillation. They achieved an accuracy of 98.1%. These studies 
demonstrate the effectiveness of neural networks in heartbeat classification using ECG signals, with 
deep learning models showing improved accuracy in detecting various cardiac arrhythmias. The use of 
neural networks has enabled the detection of complex patterns in ECG signals, improving the accuracy 
of heartbeat classification. As research in this domain continues to evolve, we can expect to see further 
improvements in the accuracy and efficiency of heartbeat classification using ECG signals. 

 
3. Data 

 

3.1. Dataset 

We utilized the renowned MIT-BIH Arrhythmia Database [9], a widely adopted benchmark for 
evaluating arrhythmia detection algorithms. This database comprises 48 half -hour segments of two-
channel ECG recordings, sampled at 360 Hz. Each recording is accompanied by expert annotations 
that categorize every heartbeat into various classes. 

To access the database in its original format, specialized tools are required. Fortunately, a text-based 
version of the database is available at [10], which we employed. This version consists of two text files 
for each ECG recording: one containing the raw signal values for both channels at each sample, 
separated by commas, and another containing beat classification information, annotated at the sample 
corresponding to each beat's peak. 

 
Fig 2. Short excerpt of the signal retrieved from patient 104 and the respective annotated 

samples, indicated with a red cross. 

All the possible categories for each beat are listed and explained in Table 3 in the appendix. In Figure 
2 we present the distribution of the annotations among all recordings. It immediately becomes obvious 
to the observer that the normal beats (denoted as N) vastly dominate over the rest. 
3.2. Pre-processing 

Before any of this data can be used, it needs to undergo a series of pre-processing steps in order to 
transform it into a format that is suitable for our task. The first step is keeping only one of the two 
channels, as in the relevant work of Hadaeghi [8], since they are highly correlated and thus, keeping 
both would be redundant. The raw signal we get from this channel is then normalized on a per-
recording basis to values in the range [0,1]. In addition, ECG data are often corrupted with signals 
generated from the power supply of the recording instrument and have slow drift components. To 
combat this, all signals are passed through a Butterworth frequency filter with a low cutoff frequency 
of 0.4Hz and a high cutoff of 30Hz. 
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Fig 3. The distribution of the annotations for all patients 

To conform with the goals of this project, a transformation should take place from the current 
timeseries format to fixed-size intervals, each encompassing a beat. We do this by splitting the signal 
into 1-second non-overlapping windows, which translates to 360 samples per window due to the 360Hz 
frequency of sampling. We chose this window length because it is very close to the average length of 
a heartbeat. Each window is then labeled with a 1 or a 0, depending on whether that window contains 
an abnormal beat or not. Figure 3 showcases an example of a negative class window. Windows which 
contain only unclassified beats are discarded from the final dataset. After this process takes place, we 
resample each window to 128 samples in order to lower the dimensionality of the input data. 

 

Fig 4. An example of a negative class window from patient 104 before resampling.  

Applying the process described above, we observed that the distribution of positive and negative 
windows for some patients was extremely skewed towards one of the two sides, making them non-
suitable for use as training data. In response to this, we decided to discard some patients from our 
experiments based on whether or not the percentage of one class of windows is less than 0.9%. This 
filtering results in the following list of 29 patient recordings that we used: [’100’, ’102’, ’104’, ’105’, 
’106’, ’108’, ’114’, ’116’, ’119’, ’200’, ’202’, ’201’, ’203’, ’205’,’208’, ’209’, ’212’, ’210’, ’213’, 
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’215’, ’217’, ’219’, ’220’, ’222’, ’221’, ’228’, ’223’, ’231’,’233’]. After the whole process, the final 
dataset consists of 49245 rows and 128 columns, accompanied by 49245 binary labels.  

Regarding these 29 patients, in figure 4 we present the distribution of the two classes over the whole 
final dataset. Even after merging all the abnormalities to a single positive class, the normal beats still 
dominate. Figure 5 presents the rate of positive class windows for each one of the selected patients. As 
expected, the ratio between positive and negative windows is not the same over different patients.  

 

Fig 5. Distribution of positive and negative windows over the final dataset 

 

Fig 6. Rate of positive class windows for each patient in the final dataset 

4. Methods  

Transfer learning is a machine learning technique where a model trained on one task is re-purposed 
or fine-tuned to perform another similar task. It is a viable solution to overcome the challenge of limited 
training data, as the pre-trained model will have already learned rich representations from large 
amounts of data and thus, will provide a strong initialization that can help the model on the target task 
quickly converge to a good solution. This renders transfer learning a widely used approach in various 
fields such as computer vision, natural language processing, and speech recognition where collecting 
and annotating large amounts of data can be extremely challenging and time-consuming. In this study, 
we are working on a binary classification problem of ECG data. As discussed in Section 2, the aim is 
to classify one-dimensional fixed-size windows of patients’ pulses as either normal (0) or abnormal 
(1). Our target –downstream– task treats each patient as a unique individual, taking into consideration 
their individual characteristics and properties. This means that we aim to provide tailored and 
personalized models and predictions to each patient separately, acknowledging that the notion of 
‘normal’ regarding beats can vary significantly from one person to another. 

To surpass the challenge of relatively limited amount of data of each patient, we employ transfer 
learning by first conducting pre-training on the collective data of all patients to acquire generic features 
of the pulse signals. Subsequently, we transfer this learned knowledge to each unique patient 
separately. We choose to leverage the same dataset for pre-training as for fine-tuning for the following 
reasons. First, the extracted pulse windows are 1-dimensional, and thus, pre-training should be 
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performed on 1dimensional data as well. In addition, trainable features that are suitable for one 
classification task, do not always perform well in other downstream tasks and especially in such niche 
applications. Variations are mainly attributed to the domain shift and the high discrepancy in the nature 
of the different tasks. In fact, several studies have indicated that the best performing encoder is the one 
trained on similar data [11,12]. Over all, utilizing historical data of patients for predicting real-time 
outcomes would be the optimal solution in real-world scenarios. 

For these reasons, our proposed methodology is task and dataset-specific and comprises the 
following two main steps. First, we perform supervised pre-training directly on all patients to explore 
the full spatial context of pulse signals and learn relevant global features that can transfer well to a 
similar medical setting. As a second step, we perform supervised fine-tuning on each individual patient 
separately to optimize even further its unique features and ultimately predict whether a pulse window 
is normal or abnormal. 

4.1. Convolutional Neural Networks 
A convolutional neural network (CNN) is a class of artificial neural networks (ANNs), most 

commonly used for computer vision-related tasks that involve the processing of pixel data. A CNN is 
typically composed of three types of layers or building blocks: convolutional, pooling, and fully-
connected layers. The first two, convolutional and pooling layers, constitute the encoder network and 
perform feature extraction, whereas the third, a fully-connected layer, maps the extracted features 
(representations) to the desired task output. 
4.1.1. Convolutional Layer: Fundamental component of any CNN architecture that combines linear 

and nonlinear operations, i.e., convolution operation and activation function.  
• Convolution operation: Defines a kernel (or filter) that slides over an input image and takes 
the dot product between the filter and the parts of the image that fall inside.  
• Activation function: Since the output of a convolution operation is a linear combination of 
features, a non-linear function is then required to add non-linearity to the network. 

4.1.2. Pooling Layer: A convolutional layer is in most cases followed by a pooling layer. This layer 
performs down sampling to reduce the dimensions of the convolved feature maps. In this way, 
the number of learnable parameters and the computational cost of the network can be reduced. 

4.1.3. Fully-connected layer: The output feature maps of the final convolutional or pooling layer 
are flattened to one-dimensional array of numbers (or vector), and connected to one or more 
fully-connected layers, also known as dense layers, in which every input is connected to every 
output by a learnable weight. The final fully-connected layer (output layer) has the same 
number of nodes as the number of classes and maps the features to the desired output, e.g., 
probabilities for each class in classification tasks. 

4.2. Pre-training pipeline 

To learn global features of pulse signals, we adopt a 1D CNN and perform supervised pre-training 
directly on all patients. A 1D CNN is commonly well-suited for processing sequential data, such us 
time series signals including pulse signals. In this work, we investigate this type of neural network in 
a binary classification setting by optimizing the binary cross-entropy (BCE) loss, defined as: 

 
where yi is the true label (1 for abnormal beats and 0 for normal beats) and p(yi) is the predicted 

probability of a certain pulse signal being abnormal for all N pulses. 
Given a randomly sampled mini-batch of N 1D-signal windows, each 1D window is encoded via a 

base encoder network, a 1D CNN, to generate global features for the whole signal window. The features 
are then forwarded to a set of dense layers, i.e., a multi-layer perceptron (MLP), and mapped to a 
nonlinear space, where the BCE loss is applied. The final goal is to generate optimal representations of 
the input signal by reducing the deviation of our predictions from the ground truth at the level of global 
features. Once the pre-training is complete, the base encoder is the model to be transferred, while the 
MLP is thrown away. 
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4.3. Fine-tuning pipeline 

To perform the required downstream task on each individual patient from scratch, we keep only the 
base encoder from the pre-trained 1D CNN without the non-linear MLP. Then, given a single pulse 
window of a specific patient of size 1 × 128, we obtain 32 × 15 optimized feature maps using the 
weights of the pre-trained encoder. Each 1D feature map extracted from the encoder is flattened, 
resulting in a feature vector x with 160 features representing the input pulse. Another option would be 
to perform some kind of pooling operation, turning each feature map into a single value. This would 
result in a final feature vector of size 32 yet with a high loss of spatial information. Finally, given the 
feature vector x with the extracted features representing the input pulse signal, we want to learn one 
binary classifier that predicts whether this pulse is normal or abnormal. In total, we train 29 binary 
classifiers, one for each of the 29 unique patients separately.  

5. Experimental Setup 

5.1. Tasks and Datasets 

The resulting dataset from the pre-processing step is imbalanced in regard to the two classes. To this 
end, in order to split it into training, validation, and test sets we employ stratified splitting, preserving 
this way the ratio of the two classes among the three subsets. Specifically, we first split the dataset into 
training validation and test sets with a 80-20 ratio and then, we further split the training-validation set 
into the training and validation sets, again with an 80-20 ratio. The random seed for the splitting 
operation is kept the same among all phases of the experiments in order to preserve the same examples 
in the sets across them. This means that the held-out test set is consistent across all experiments, since 
it should remain unseen by the network during the pre-training phase. 

Another method we employed for dealing with the imbalanced dataset is weighted sampling, which 
allows for the less-represented class to be presented to the classifier in the same rate with the dominant 
one. This prevents the loss of every epoch to be dominated by the higher-frequency class and 
subsequently boosts the performance of the classifier on the other class.  

5.2. CNN architecture 

Our proposed CNN takes as input a 1 × 128 pulse window with frequency values in the range [0,1]. 
It consists of four convolutional blocks, each composed of a stack of two convolutional layers with 32 
kernels of size 5 × 5, max pooling layer over a 5 × 5 kernel, and Rectified Linear Unit (ReLU) activation 
function. ReLU activation is defined as z = max(0,z) with z being the output of the second convolutional 
layer in each block. Our architecture also incorporates skip connections between layers via addition,  
inspired by the architecture of ResNet [13] for two-dimensional data. After the encoder part, the output 
is flattened to a 1×160 vector. On top of that, we add one dense layer of 160 units, followed by a 
singleunit output layer that conforms to the binary classification setting of our task. For the final layer, 
we use the sigmoid activation function that guarantees that the final output will always be between 0 
and 1. As the sigmoid is a non-linear function, the output unit will be a non-linear function of the 
weighted sum of inputs and is derived by the following formula: 

x 

 , (2) 
where x is the output of the final unit layer and exists in the range (−∞,+∞). Considering that our 

dataset is low-dimensional and the task is binary classification, we decided to have a relatively simple 
architecture with a relatively small number (67169) of trainable parameters. The proposed architecture 
is illustrated in Figure 6. 
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Fig 7. The architecture of our CNN. 

5.3. Baseline method 

For our baseline, we used classifiers that are based on the CNN architecture described in 4.2 and 
trained on the data of each patient individually. In order to decide on the optimal hyperparameters for 
each classifier, we performed a grid search over a range of values for learning rate and batch size 
chosen based on generally applied practices and our experiences, as well as toggling the option of 
weighted sampling. Those parameters along with their range are displayed in Table 1.  

 

 
Table 1. Parameters and their corresponding range for grid search of individual classifiers.  

Parameter  Range 

Learning 
Rate 

{0.001,0.01,0.1} 

 

Batch Size {4,16,32} 

Weighted 
Sampling  

{True, False} 

Our primary metric for the classification task is balanced accuracy as it can deal with imbalanced 
data in a classification setting. The balanced accuracy is defined as follows: 

5.4. Pre-training protocol 

For the pre-training phase, we investigate the 1D CNN as our base encoder network for learning 
optimal global features that are representative of the pulses windows. An MLP follows that maps the 
output of the encoder to a 160-dimensional embedding, which is used for binary classification. We 
perform supervised pre-training on the entire dataset of all patients trying to minimize the BCE loss. 

We adopt Adam as the optimizer and set its weight decay and learning rate to 0 .0001 and 0.001, 
respectively. The pre-training model is trained with a batch size of 32 and optimized with a reduce 
learning rate schedule that adjusts the learning rate during the training process. Using this protocol, the 
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model is pre-trained on all patients for up to 30 epochs, which is a total of approximately 30K iterations. 
In the end, we keep the model at the epoch with the lowest validation loss for later use. All pre-training 
experiments are implemented in Python programming language using the PyTorch framework under 
the Google Colab environment. Our code supports both Central Processing Unit (CPU) and Graphics 
Processing Unit (GPU) programming. 

5.5. Fine-tuning protocol 

We train the 1D CNN model during the downstream task evaluation using the weights of the best 
performing pre-trained network as initialization. The end-to-end network for the fine-tuning phase is 
the one described in Section 4.2. At this stage, we use the same experimental setup for each patient as 
in the baseline method detailed in Section 4.3. Finally, we evaluate the fine-tuned model on the test set 
for each individual patient to report the final task performance on completely unseen data. Our primary 
metric for the classification task is balanced accuracy as it can deal with imbalanced data in a 
classification setting. 

6. Experiments and Results 

In this section, we evaluate the performance of transfer representation learning in binary 
classification. To this end, first, we explore the choice of the (pre-)training strategy for extracting 
features from 1D pulse windows and performing binary classification. Next, we compare the 
performance of transfer learning against the supervised training baseline. For each system, we provide 
the same performance metrics for fair comparisons. 

6.1. Pre-training 

During the pre-training of the network, we use the loss on the validation set as the criterion for model 
selection. In Figure 7 we can see the loss curves for the training and validation sets. The red vertical 
line denotes the epoch (16) where the validation loss is minimum. 

 

Fig 8. Training and validation loss curves over epochs for the pre-training phase. 

6.2. Individual patients 

To be able to judge the usefulness of the application of transfer learning in this context, we first 
present an evaluation of the performance of the classifiers that were trained on the data of a specific 
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patient only as a baseline. For this evaluation, we primarily use the metric of balanced accuracy that 
was achieved on the test set. The setups used for each classifier can be seen in 2 in the appendix. In 
Figure 8, the performance of all 29 individual classifiers is reported, collected into bins for a clearer 
overview. The average balanced accuracy on the test set for the individual classifiers is 0 .946. 

We randomly chose patient 203 to present the indicative progression of the training of these 
classifiers. Figure 9 shows the training and validation loss curves (left) and the evolution of the 
balanced accuracy over the epochs (right). 

 

Fig 9. Histogram of the balanced accuracy of the individual classifiers on the test set.  

 
Fig 10. Loss curve (left) and balanced accuracy (right) plots over epochs for patient 203 for the 

individual classifier. 

6.3. Transfer learning 

We perform the same evaluation for the classifiers that we obtained with the method of transfer 
learning. In Figure 10 we present the balanced accuracy achieved on the test set for each derived 
classifier, again grouped into bins for visibility. The average balanced accuracy on the test set for the 
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fine-tuned classifiers is 0.935. Figure 11 shows how the loss (left) and balanced accuracy (right) change 
over the epochs for the indicative patient 203. 

Figure 12 makes the comparison between the achieved balanced accuracies on the test set of the 
classifiers trained on the specific patients and classifiers derived from the fine-tuning of the network 
that was pre-trained on the whole dataset. 

 

Fig 11. Histogram of the balanced accuracy of the fine-tuned classifiers on the test set. 

 

Fig 12. Loss curve (left) and balanced accuracy (right) plots over epochs for patient 203 for the 

fine-tuned classifier. 
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Fig 13. Bar plot of the balanced accuracy for each patient on the test set (individuals, fine-

tuning) 

7. Discussion 

As shown in Table 2, the optimal hyperparameters vary for each patient. For example, we can see 
that for patient 104, the optimal batch size is 4, while for patient 200 the optimal batch size is 32. This 
shows the importance of the grid search using the validation set, and that it should be done separately 
for each patient. Figure 7 shows the progression of loss function during pre-training. The training loss 
shows a steady and persistent decrease, following a monotonic trend, until the end of the training 
process. This indicates that the neural network is effectively learning from the training data and 
improving its performance over time, without strong fluctuations or plateaus in the loss reduction. 
However, the validation error starts increasing after epoch 16. For this reason, we choose the model at 
epoch 16 that has the lowest validation error. 

Figure 9 (left) shows the progression of the loss function over the epochs, during the training of the 
individual classifier for patient 203. We can clearly see that the training loss is converging. Regarding 
the validation loss, it is fluctuating considerably during the first 5 epochs, reaching its lowest at 8 
epochs. Figure 9 (right) shows the progression of the balanced accuracy over the epochs, during the 
training of the individual classifier for patient 203. We note that as the training process goes on, the 
balanced accuracy on the training set increases, but on the validation set it converges around the 3rd 
epoch, with some fluctuations. 

Figure 11 (left) shows how the loss function evolves over the epochs during the fine -tuning for 
patient 203. The training loss converges fast. The validation loss displays some variations, and then 
converges. Figure 11 (right) shows the balanced accuracy f or each epoch during the fine-tuning for 
patient 203. We can see that the training accuracy is high, as well as the validation accuracy. Figure 8 
shows the histogram of the balanced accuracy obtained from the individual classifiers on the test set. 
We can see that the majority of the classifiers (18 out of 29) have achieved a balanced accuracy higher 
than 0.95, and 7 out of 29 were between [0.90,0.95]. There is one patient with a relatively low balanced 
accuracy between [0.70,0.75], while for the other 3 patients, we achieved balanced accuracy between 
[0.75,0.90]. In general, for most patients, the individual classifiers can achieve high performance. The 
corresponding histogram for the fine-tuning is shown in Figure 10. We can see that, fine-tuning is able 
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to yield high performance for most of the patients (16 out of 29 between [0.95,1.0], and 8 out of 29 
between [0.90,0.95]. However, for some patients the performance is not that good (one patient 
[0.65,0.70], and 4 between [0.75,0.90]). Figure 12 shows a horizontal plot with the balanced accuracy 
on the test set for all patients, both for fine-tuning and individual classifiers. What is important to see 
here, is that for some patients the individual classifiers have better results (e.g. , 222, 219), while for 
some others, fine-tuning was able to boost the performance (e.g., 100, 202).  

When comparing the loss and balanced accuracy on the training set, the correlation between them 
is clear. This is an indicator that the loss function we use (BCE loss) was a proper choice. In general, 
we can say that while both methods achieve great results, the individual classifiers seem to get a slight 
edge over the fine-tuning. More specifically, the individual classifiers slightly surpasses the fine-tuned 
ones by a margin of 0.01 on average. This can be partially explained by the experimental setup. For the 
individual classifiers, we perform a grid search to find the optimal hyperparameters (e.g., batch size, 
learning rate), and for the second phase of fine-tuning we use those hyperparameters found for the 
individuals. Perhaps another grid search during the fine-tuning, or using the hyperparameters used in 
pre-training, would help the transfer learning achieve better performance.  

8. Conclusion 

In this work, we have trained various CNNs for the purpose of classifying an ECG signal into normal 
or abnormal. We use the MIT-BIH arrhythmia database which contains raw ECG signals, annotated 
by medical experts. After applying some pre-processing steps to clear the raw data, we split the 
resulting signal into windows of fixed length. Next, we annotate each window (0 for normal/1 for 
abnormal) according to the annotation provided by the medical expert. Then, we use those windows as 
input patterns into a CNN, and as targets, we use the 0/1 label set. Our goal was to create a system that 
could classify the input patterns as normal or abnormal. To achieve this, we use individual classifiers 
as a baseline, and transfer learning. For the individual classifiers, we train a separate CNN for each 
patient, using only data from that patient. We also perform a grid search to find the optimal 
hyperparameters for each patient, using a dedicated validation set. For transfer learning, we use data 
from all the patients to train a generic network, in hope of learning the important features. Then we use 
that generic network, and fine-tune it on each patient. Our results show that the individual classifiers 
are performing quite well already, and the transfer learning while it increases the performance for some 
cases, on average it achieves marginally worse results. 

9. Limitations and Future Work 

The study's main limitation is that it only uses patient data for training a system, which is challenging 
in practical applications. To create a system that classifies a patient's ECG, data collection and 
annotation are necessary. Future work could explore different setups, pre-processing options, window 
sizes, beat detection, and combining datasets to increase available data. Experiments with more layers, 
loss functions, dropout between layers, and learning rates could also be explored. Additionally, data 
augmentation or moving average filters could be explored in the pre-processing stage. The study also 
suggests combining the dataset with other similar ones to increase data availability. 
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Appendix 
 

 

 

 
Fig 14. Sample plots for Mean Absolute Error (MAE) loss show the difference between actual 

and reconstructed values of a CNN autoencoder, highlighting its performance in tasks like 

anomaly detection and data compression. 
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Fig 15. Sample plots of Mean Squared Error (MSE) loss show actual input and reconstructed 

output of a CNN autoencoder, with lower MSE values indicating better performance in 

capturing underlying data patterns. 
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Fig 16. Sample plots for MSE loss: actual vs. reconstructed by CNN autoencoder. The plots 

display Normal and Anomaly for both Actual Class and Predicted Class, highlighting the 

model's performance in distinguishing normal data from anomalies. Lower MSE values 

 


